• Title/Summary/Keyword: Diebold-Mariano Test

Search Result 4, Processing Time 0.018 seconds

Comparison of realized volatilities reflecting overnight returns (장외시간 수익률을 반영한 실현변동성 추정치들의 비교)

  • Cho, Soojin;Kim, Doyeon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.85-98
    • /
    • 2016
  • This study makes an empirical comparison of various realized volatilities (RVs) in terms of overnight returns. In financial asset markets, during overnight or holidays, no or few trading data are available causing a difficulty in computing RVs for a whole span of a day. A review will be made on several RVs reflecting overnight return variations. The comparison is made for forecast accuracies of several RVs for some financial assets: the US S&P500 index, the US NASDAQ index, the KOSPI (Korean Stock Price Index), and the foreign exchange rate of the Korea won relative to the US dollar. The RV of a day is compared with the square of the next day log-return, which is a proxy for the integrated volatility of the day. The comparison is made by investigating the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). Statistical inference of MAE and RMSE is made by applying the model confidence set (MCS) approach and the Diebold-Mariano test. For the three index data, a specific RV emerges as the best one, which addresses overnight return variations by inflating daytime RV.

Nonlinear impact of temperature change on electricity demand: estimation and prediction using partial linear model (기온변화가 전력수요에 미치는 비선형적 영향: 부분선형모형을 이용한 추정과 예측)

  • Park, Jiwon;Seo, Byeongseon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.703-720
    • /
    • 2019
  • The influence of temperature on electricity demand is increasing due to extreme weather and climate change, and the climate impacts involves nonlinearity, asymmetry and complexity. Considering changes in government energy policy and the development of the fourth industrial revolution, it is important to assess the climate effect more accurately for stable management of electricity supply and demand. This study aims to analyze the effect of temperature change on electricity demand using the partial linear model. The main results obtained using the time-unit high frequency data for meteorological variables and electricity consumption are as follows. Estimation results show that the relationship between temperature change and electricity demand involves complexity, nonlinearity and asymmetry, which reflects the nonlinear effect of extreme weather. The prediction accuracy of in-sample and out-of-sample electricity forecasting using the partial linear model evidences better predictive accuracy than the conventional model based on the heating and cooling degree days. Diebold-Mariano test confirms significance of the predictive accuracy of the partial linear model.

Forecasting Long-Memory Volatility of the Australian Futures Market (호주 선물시장의 장기기억 변동성 예측)

  • Kang, Sang Hoon;Yoon, Seong-Min
    • International Area Studies Review
    • /
    • v.14 no.2
    • /
    • pp.25-40
    • /
    • 2010
  • Accurate forecasting of volatility is of considerable interest in financial volatility research, particularly in regard to portfolio allocation, option pricing and risk management because volatility is equal to market risk. So, we attempted to delineate a model with good ability to forecast and identified stylized features of volatility, with a focus on volatility persistence or long memory in the Australian futures market. In this context, we assessed the long-memory property in the volatility of index futures contracts using three conditional volatility models, namely the GARCH, IGARCH and FIGARCH models. We found that the FIGARCH model better captures the long-memory property than do the GARCH and IGARCH models. Additionally, we found that the FIGARCH model provides superior performance in one-day-ahead volatility forecasts. As discussed in this paper, the FIGARCH model should prove a useful technique in forecasting the long-memory volatility in the Australian index futures market.

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.