• Title/Summary/Keyword: Die pressing

Search Result 117, Processing Time 0.031 seconds

Finite Element Analysis of Shrink Fitting Tolerance and Force of Tile Mold Liner and Fitting Material (타일 금형 라이너 및 끼움재의 열박음 공차 및 결합력에 대한 해석적 연구)

  • Lim, Dong Wook;Lee, Jeong Sik;Jeong, Young Ho;Choi, Doo Sun;Ko, Kang-Ho;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.50-56
    • /
    • 2020
  • Ceramic tile is widely used as a floor or interior decoration of buildings. The main processes are raw material blending, molding, drying, firing, etc., and since dimensional and quality stability are very important, they are generally molded by a dry press method. In ceramic tile molds, there is a liner that can be easily replaced in case of wear. The liner is constantly abrasion due to a continuous pressing process during tile forming, and it is required to be replaced every certain period. Even in the liner, use a wear-resistant fitting material only in areas where wear is concentrated. However, there was a risk that the fitting material was applied to large-sized tile molding due to problems such as damage to the molding machine and decrease in productivity when detached during the actual tile molding process due to weak fitting strength with the liner. Therefore, in this study, thermal-structural analysis for fitting tolerance analysis and structural analysis for fitting force analysis were performed for the shrink fit process of the fitting material.

Influence of the Change of Advertisement Policy in Broadcasting Industry (광고제도 변화가 방송 제작산업에 미친 영향)

  • Roh, Dong-Ryul
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.138-147
    • /
    • 2015
  • The primary focus of Korea's advertisement policy has been on the securing of stability in the market through building categorical entry barriers whenever a new broadcaster came into the market. But the recent contraction of the advertisement market is pressing the policy makers to lift the categorical barriers to create one large-enough market. This change in the policy and the market, in turn, is triggering heightened competition among drama producers to get advertisements, at times, even at the expense of cost efficiency. The market is supposed to search for its own equilibrium in principle. This means that players, who fall behind, should be left to die out and exit, and the patient policy to let the market function on its own should be institutionalized. Separately, the fee-based public broadcasters should be banned from running advertisements.

Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method (유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석)

  • Yoon, S.C.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.123-132
    • /
    • 2013
  • Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

Application of ICP(Iterative Closest Point) Algorithm for Optimized Registration of Object Surface and Unfolding Surface in Ship-Hull Plate Forming (선박 외판 성형에서 목적 형상과 전개 평판의 최적 정합을 위한 ICP(Iterative Closest Point) 알고리즘 적용)

  • Lee, Jang-Hyun;Yoon, Jong-Sung;Ryu, Cheol-Ho;Lee, Hwang-Beom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 2009
  • Generally, curved surfaces of ship hull are deformed by flame bending (line heating), multi-press forming, and die-less forming method. The forming methods generate the required in-plane/bending strain or displacement on the flat plate to make the curved surface. Multi-press forming imposes the forced displacements on the flat plate by controlling the position of each pressing points based upon the shape difference between the unfolded flat plate and the curved object shape. The flat plate has been obtained from the unfolding system that is independent of the ship CAD. Apparently, the curved surface and the unfolded-flat surface are expressed by different coordinate systems. Therefore, one of the issues is to find a registration of the unfolded surface and the curved shape for the purpose of minimum amount of forming works by comparing the two surfaces. This paper presents an efficient algorithm to get an optimized registration of two different surfaces in the multi-press forming of ship hull plate forming. The algorithm is based upon the ICP (Iterative Closest Point) algorithm. The algorithm consists of two iterative procedures including a transformation matrix and the closest points to minimize the distance between the unfolded surface and curved surfaces. Thereby the algorithm allows the minimized forming works in ship-hull forming.

Sintering Behavior and Microstructures of Tantalum and Tantalum-Tungsten Alloys Powders (탄탈륨 및 탄탈륨-텅스텐 합금 분말의 소결성 및 미세조직 연구)

  • Kim, Youngmoo;Yang, Sung Ho;Lee, Seong;Lee, Sung Ho;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.373-380
    • /
    • 2020
  • The purpose of this study is to investigate the densification behavior and the corresponding microstructural evolution of tantalum and tantalum-tungsten alloy powders for explosively formed liners. The inherent inhomogeneous microstructures of tantalum manufactured by an ingot metallurgy might degrade the capability of the warhead. Therefore, to overcome such drawbacks, powder metallurgy was incorporated into the near-net shape process in this study. Spark plasma-sintered tantalum and its alloys with finer particle sizes exhibited higher densities and lower grain sizes. However, they were contaminated from the graphite mold during sintering. Higher compaction pressures in die and isostatic compaction techniques also enhanced the sinterability of the tantalum powders; however, a full densification could not be achieved. On the other hand, the powders exhibited full densification after being subjected to hot isostatic pressing over two times. Consequently, it was found that the hot isostatic-pressed tantalum might exhibit a lower grain size and a higher density as compared to those obtained in previous studies.

The Development and Application of Sheet Metal Forming Technology (박판성형기술의 개발과 적용)

  • 박춘달;이장희;양동열;허훈;정동원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.147-162
    • /
    • 1994
  • Generally, the forming process of sheet metal is very complex and difficult process because of many variables such as tool geometry, material properties and lubrication. In this view point, the numerical analysis of sheet metal forming process is very difficult. High speed computer is used to model complex sheet metal forming process on a reasonable time scale. The design and development of sheet metal parts in the automotive industry and the need for improved sheet forming process and reduced part development cost have led to the use of computer simulation in tool/die design of sheet metal pressing. HMC(Hyundai Mator Company) has invested to develop programs for analysis of sheet metal forming process with connection of Universities. As a result, several programs were developed. Recently, the commercial software, PAM-STAMP of ESI was installed and is being tried to application of it to the real automotive panels. This article reviews the ongoing activities on development and application of analytical modeling of sheet metal forming at HMC.

The Effect of Cooling Rate on the Structure and Mechanical Properties of Fe-3%Mn-(Cr)-(Mo)-C PM Steels

  • Sulowski, Maciej;Cias, Andrzej;Frydrych, Hanna;Frydrych, Jerzy;Olszewska, Irena;Golen, Ryszard;Sowa, Marek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.563-564
    • /
    • 2006
  • The effect of different cooling rate on the structure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at $1120^{\circ}C$ and $1250^{\circ}C$ in $H_2/N_2$ atmospheres and cooled with cooling rates $1.4^{\circ}C/min$ and $6.5^{\circ}C/min$. Convective cooled specimens were subsequently tempered at $200^{\circ}C$ for 60 and 240 minutes.

  • PDF

Effect of Pressing Process on the High-Temperature Stability of Yttria-Stabilized Zirconia Ceramic Material in Molten Salt of CaCl2-CaF2-CaO (CaCl2-CaF2-CaO 용융염에서 YSZ 세라믹의 고온 안정성에 미치는 성형공정의 영향)

  • Kim, Wan-Bae;Kwon, Suk-Cheol;Cho, Soo-Haeng;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.176-183
    • /
    • 2020
  • The high-temperature stability of YSZ specimens fabricated by die pressure and cold isostatic press (CIP) is investigated in CaCl2-CaF2-CaO molten salt at 1,150 ℃. The experimental results are as follows: green density 46.7 % and 50.9 %; sintering density 93.3 % and 99.3 % for die press and CIP, respectively. YSZ foremd by CIP exhibits higher stability than YSZ formed by die press due to denseness dependency after high-temperature stability test. YSZ shows peaks mainly attributed to CaZrO3, with a small t-ZrO2 peak, unlike the high-intensity tetragonal-ZrO2 (t-ZrO2) peak observed for the asreceived specimen. The t-ZrO2 phase of YSZ is likely stabilized by Y2O3, and the leaching of Y2O3 results in phase transformation from t-ZrO2 to m-ZrO2. CaZrO3 likely forms from the reaction between CaO and m-ZrO2. As the exposure time increases, more CaZrO3 is observed in the internal region of YSZ, which could be attributed to the inward diffusion of molten salt and outward diffusion of the stabilizer (Y2O3) through the pores. This results in greater susceptibility to phase transformation and CaZrO3 formation. To use SOM anodes for the electroreduction of various metals, YSZ stability must be improved by adjusting the high-density in the forming process.

A Study for In-process Monitoring in Press die (프레스금형 형내 모니터링에 대한 연구)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.692-696
    • /
    • 2017
  • The shape of press components is becoming increasingly complex due to customer demands, process shortening and cost savings. In addition, the stability of the pressing process frequently varies during mass production due to the influence of many factors. In order to ensure the process stability, it is necessary to establish a process in which reproducibility is realized in tolerance, which is sufficient for advance study of shape, material, press, mold and lubrication. However, unforeseen changes in process parameters cause disruptions in production line shutdowns and production planning. In this paper, we introduce a method to monitor a real time process by applying a sensor to a press mold. A non-contact type sensor for measuring the flow of a sheet material and an example of an experiment using the optical sensor which is highly applicable to mass production are presented. An optical sensor was installed in a cylindrical drawing mold to test its potential application while changing the material, blank holder force, and drawing ratio. We also quantitatively determined that the flow of other sheet materials was quantified locally using a square drawing die and that the measured value was always smaller than the drawing depth due to the material elongation. Finally, we propose a field that can be used by attaching the sensor to the press mold. We hope that the consequent cost reduction will contribute to increasing global mold competitiveness.

A study on the brittle characteristics of fused silica header driven by piezoelectric actuator for laser assisted TC bonding (레이저 열-압착 본딩을 위한 압전 액추에이터로 구동되는 용융실리카 헤더의 취성특성에 관한 연구)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Semiconductor chip is bonded to the substrate by melting solder bumps. In general, the chip bonding is applied by a Reflow process or a Thermo-Compression(TC) bonding process. In this paper, we introduce a Laser Assisted Thermo-Compression bonding (LATCB) process to improve the anxiety of the existing process(Reflow, TC bonding). In the LATCB process, the chip is bonded to the substrate by irradiating a laser with a uniform energy density in the same area as the chip to melt only the solder bumps and press the chip with a Transparent Compression Module (TCM). The TCM consists of a fused silica header for penetrating the laser and pressurizing the chip, and a piezoelectric actuator (P.A.) coupled to both ends of the header for micro displacement control of the header. In addition, TCM is a structure that can pressurize the chip and deliver it to the chip and solder bumps without losing the energy of the laser. Fused silica, which is brittle, is vulnerable to deformation, so the header may be damaged when an external force is applied for pressurization or a displacement differenced is caused by piezoelectric actuators at both ends. On the other hand, in order to avoid interference between the header and the adjacent chip when pressing the chip using the TCM, the header has a notch at the bottom, and breakage due to stress concentration of the notch is expected. In this study, the thickness and notch length that the header does not break when the external force (500 N) is applied to both ends of the header are optimized using structural analysis and Coulomb-Mohr failure theory. In addition, the maximum displacement difference of the P.A.s at both ends where no break occurred in the header was derived. As a result, the thickness of the header is 11 mm, and the maximum displacement difference between both ends is 8 um.