• Title/Summary/Keyword: Die life

Search Result 347, Processing Time 0.022 seconds

The Development of Punch-Die Aligning Algorithm in Micro Punch System with using the Total Capacitance (총 정전용량을 이용한 마이크로펀치 시스템의 펀치-다이 얼라인먼트 조절 알고리즘 개발)

  • 최근형;김병희;김헌영;장인배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.114-119
    • /
    • 2003
  • The aligning between the punch and die governs no only the burr formation characteristics but also the life time of the punch and die in the sheet metal blanking process. There are many ways to adjust the two elements in the general punching systems but in the case of micro punch system, the punch size is reduced to a few tenth of micrometer range and the general aligning methods are almost impossible to apply. The image processing is the most widely used method in micro punch aligning, but in order to apply the method, it needs quite a large space for visionary system to approach the punch-die aligning zone. In this paper, the new punch-die aligning method with using the total capacitance between the punch and die hole is proposed. In this method, the tip surface of the punch tool locates at the same plane of the die surface and the capacitance variation between the two elements are measured. When the center of the two elements are coincided, the capacitance is minimized, but when the align is changed to any direction, the capacitance between the two elements increase. In order to verify the feasibility of this method, the aligning and punching tests was performed.

The development of punch-die aligning algorithm in micro punch system with using the total capacitance (총 정전용량을 이용한 마이크로 펀치 시스템의 펀치-다이 얼라인먼트 조절 알고리즘 개발)

  • 최근형;김병희;김헌영;장인배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1049-1052
    • /
    • 2002
  • The aligning between the punch and die governs no only the burr formation characteristics but also the life time of the punch and die in the sheet metal blanking process. There are many ways to adjust the two elements in the general punching systems but in the case of micro punch system, the punch size is reduced to a few tenth of micrometer range and the general aligning methods are almost impossible to apply. The image processing is the most widely used method in micro punch aligning, but in order to apply the method, it needs quite a large space for visionary system to approach the punch-die aligning zone. In this paper, the new punch-die aligning method with using the total capacitance between the punch and die hole is proposed. In this method, the tip surface of the punch tool locates at the same plane of the die surface and the capacitance variation between the two elements are measured. When the center of the two elements are coincided, the capacitance is minimized, but when the align Is changed to any direction, the capacitance between the two elements increase. In order to verify the feasibility of this method, the aligning and punching tests was performed.

  • PDF

Optimum Design of Formed Tool for Die of Bearing Rubber Seal Using Design of Experiments (실험계획법에 의한 자동차용 러버실 금형가공을 위한 총형공구의 최적설계)

  • Lee, Li-Hai;Lim, Pyo;Lee, Hi-Koan;Yang, Gyun-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • A bearing is one of core parts in automobile. Rubber seal of the bearing is important to improve performance of bearing, formed by hot-press die of rubber seal for the intricate shape. In this study, formed tools are used to machine die of bearing rubber seal and the machining operation is classified into the several process of high precision. Design of experiments is used to optimize selection of the formed tools for the efficient machining of the hot-press die. The cutting force, tool wear and tool life are determined to characteristics. And, the clearance angle, the rake angle and the length cutting edge are considered as the major factors. Experiments are repeated to use one-way factorial design, and tool life is predicted by regression model.

A study on the abrasion resistance of punching carbide material of die for the application of SCP-1 material (SCP-1재료 적용을 위한 초경재료 펀치의 내마모성에 대한 연구)

  • Kim, Seung-Soo;Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.44-48
    • /
    • 2019
  • Motor core products are used as materials for electrical steel sheets and cold-rolled steel sheets according to the performance of motors. The cemented carbide material of the mold punch applied to the motor core material causes many troubles due to abrasion and burr problem. The selection of these materials has a great effect on the production life, mass production, product quality as well as mold life. The cemented carbide applied to the products of the motor core is recognized as a very important part. In this study, cold rolled steel sheet was applied to motor core SCP-1 steel 1.0mm, and The effects of abrasion and punching oil on the shear process were investigated for the selection of cemented carbide. Experiments were conducted to select and apply cemented carbide only for the motor core punch optimized for cold rolled steel. The results showed that the cemented carbide material of $CDK3^{***}$ produced the least wear and burrs.

The Influence of Diamond Abrasive Size on the Life of Tungsten Carbide Wet Drawing Dies (다이아몬드 연마재 입도가 초경 습식신선 다이스 수명에 미치는 영향)

  • Lee, S.K.;Kim, M.A.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.518-523
    • /
    • 2006
  • Wet wire drawing of brass coated steel wire, used for tire reinforcement, is realized with Tungsten Carbide(WC) dies sintered with a cobalt(Co) binder. Dies wear represents an important limitation to the production process and cost savings. Several parameters, such as Co content, WC grain size of tungsten carbide, sintering conditions, and so on, affect on the wear of the drawing die. In this study, the effect of the diamond abrasive particle size on the life of the WC centered dies of the wet wire drawing was investigated. Wet wire drawing experiments were carried out on a wet wire drawing machine. From the experiments, the dies life, dies fracture, wire surface roughness, and wire breaks were investigated. From the results, it was found that the wear of the WC dies increased with the increase in the diamond abrasive particle size.

Process variables and die life for cold forging (냉간단조용 금형 수명에 미치는 공정 변수의 영향)

  • Lee Y. S.;Choi S. T.;Kwon Y. N.;Rhyim Y. M.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • For the production of cold forged parts with near-net-shape attributes, the quality of the tool system is responsible for an essential portion of costs fer the finished components. Therefore, a tool lift is one of the important issues on cold forging industry. There are many complicated variables related with tool life, such as material, heat-treatment, coating, lubricant, process design. In this study, heat-treatment of tool material and lubricant are investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, friction factor of lubricants for cold forging are measured by the ring compression test. Zinc-Phosphate and $MoS_2$ lubricant is effective to sustain the friction factor under 0.1.

  • PDF

The Effect of Nitriding/DLC Coating on the High Cycle Fatigue Properties of Fe-3.0Ni-0.7Cr-1.4Mn-X Steel (Fe-3.0Ni-0.7Cr-1.4Mn-X강의 고주기피로특성에 미치는 질화/DLC코팅의 영향)

  • Jang, Jae Cheol;Kim, Song-Hee
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.587-594
    • /
    • 2016
  • Various surface treatments and thin film coating processes on the surface of injection die steel have been developed to extend the life. Most of previous studies were mainly focused on investigating the wear and static bonding behavior of thin films. In this study complex surface treatments of DLC coating combined with ion nitriding were applied to increase fatigue life and wear resistance. Ion nitriding, DLC coating, and DLC coating following nitriding on the surface of Fe-3.0Ni-0.7Cr-1.4Mn-X steel were investigated to uncover the beneficial effect which is applicable to injection die. The effect of various surface treatments and coating conditions on high cycle fatigue resistance was studied. Surface morphology change during fatigue tests were observed with AFM. Fatigue life of the die steel increased by 10 to 1,000 times at the various level of stress amplitudes in the condition of DLC coating following the ion nitriding for 3 hrs comparing with the only DLC coated condition.

Comparison of punch life of powder high speed tool steel and high speed tool steel (분말고속도공구강과 고속도공구강의 펀치 수명 비교)

  • Lee, Woo-Ram;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • A lot of research is being done on metal materials to improve the lifespan of molded parts. As a result, excellent mold materials have been developed that withstand high hardness at high temperatures and frictional heat generated from high-speed cutting. In this study, the press mold life of powder high-speed tool steel and general high-speed tool steel was compared. Powdered high-speed steel is composed of alloying elements such as tungsten, maldividene, cobalt, chromium, and vanadium in steel, which improves wear resistance compared to high-hardness and high-speed tool steels. The mold parts of both steel types were manufactured in the same way from heat treatment to machining, and the powder high-speed tool steel was 66HRC and the high-speed tool steel was 61HRC. As a result of the experiment, it was observed that the number of punching of powder high-speed tool steel was improved by 40-50%, and powder high-speed tool steel had fewer impurities, uniform texture, and excellent surface structure. It has a microscopic structure.

Forging Die Design using Ceramic Insert (세라믹 인서트를 이용한 단조 금형설계)

  • 권혁홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2000
  • The use of ceramic inserts in steel forging tools offers significant technical and economic advantages over other materi-als of manufacture. These potential benefits can however only be realised by optimal design of the tools so that the ceramic insert are not subjected to stresses that led to their premature failure. In this paper the data on loading of the tools is determined from a commercial forging simulation package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite-element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic detections generated in shrink fitting the die inserts and that caused by the stresses generated in the forging process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. Simulation results have been validated as a result of experimental investigation. Laboratory tests on ceramic insert dies have verified the superior performance of the Zirconia and Silicon Nitride ceramic insert in order to prolong maintenance life.

  • PDF

Evaluation of Thermal Characteristics for Warm Forging Die due to Lubricants and Surface Treatments (윤활제와 표면처리에 따른 온간단조 금형의 열적특성 평가)

  • 김종호;김동진;정덕진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.833-836
    • /
    • 2000
  • The mechanical and thermal load. and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause wear. heat checking and plastic deformation, etc. This study is for the effects of solid lubricants and surface treatments for warm forging die Because cooling effect and low friction are essential to the long lift of dies. optimal surface treatments and lubricants are very important to hot and warm forging Process. The heat that is generated by repeated forging processes. and its transfer are important factors to affect die life. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these. experiments art performed for diffusion coefficient and heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments. and oil- base and water-base graphite lubrirants are used. The effects of lubricant and surface treatment for warm forging die lift are explained by their thermal characteristics.

  • PDF