• Title/Summary/Keyword: Die clamping force

Search Result 16, Processing Time 0.026 seconds

A study on reduction of clamping force for plastic back cover of large TV (대형 TV의 플라스틱 후면 커버 성형시의 형체력 절감 방안 연구)

  • Song, Jae-Choon;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.36-41
    • /
    • 2019
  • A large plastic molding requires an injection molding with a large clamping force. However, it could not be prepared in the manufacturing at any time. In order to solve the problem, the injection molding analysis study was conducted on the back cover of 55 inch LED TV. The study compared the case of applying the existing flow system such as hot runner, the improvement of the hot runner lay-out and the precise control of the gate operation time, From the results of using the improved flow system, it was found that the welding and the clamping force were considerably improved as compared with before the improvement. In particular, the clamping force was reduced by 50% compared with before the improvement.

A study on the flashes and filling defects of inner part and on problem-solving measures (내통의 플래시 및 충진불량에 대한 해결방법에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang;Lee, Choon-kyu
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.79-83
    • /
    • 2012
  • Inner part is used as an insulator in wire fuses. After injection molding, inner part has been showed flashes, filling defects and deformation. After production, operators have to cut off flashes, one by one. this process leads to continuous low productivity and loss of source materials. This study focuses on identifying the causes for flashes, filling defects, clamping force of injectors, mold adhesion, resin of liquidity and others, and on resolving those issues.

  • PDF

A structural study on mold EMBO equipment to minimize the influence on the bottom dead center displacement of precision high-speed press (정밀고속 PRESS 하사점 변위량에 영향을 최소화 하는 금형 EMBO 장치에 관한 구조 연구)

  • Kim, Seung-Soo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Laminate products for motor core are developed with a structure in which the importance of quality level and clamping force is influenced by the recent performance and safety of the product. It has been confirmed that the accuracy of the mold is emphasized, and that the accuracy of the tightening force produced by the stacked product for the motor core is greatly influenced by the change in the bottom dead center displacement of the aged high speed press. The reason why setting the mold, and test the effect of bottom dead center of high speed press is to improve product pull force in embossing process at mold. We have applied the system to minimize the effect on the damping displacement under the dynamical degree of the equipment by applying the emboss complement device which can test the influence and complement in the process.

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging (액압벌징에 의한 보온용기의 제조방법 개발)

  • Chung, Joon-Ki;Cho, Woong-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.24-31
    • /
    • 1999
  • Bulging is a forming method to shape of die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at the both ends of tube. The diameter of tube expands by hydraulic pressure in tube. at the same time, thrust at the both ends of tube. pushes tube in the direction of expansion to obtain high expanding rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by the combination method of bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging

  • Chung, Joon-Ki;Cho, Woong-Shick
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.40-46
    • /
    • 2001
  • Bulging is a forming method to shape die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at both ends of the tube. The diameter of tube expands by hydraulic pressure in tube. At the same time, thrust at both ends of the tube pushes tube in the direction of expansion to obtain high expansion rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by combining bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Optimization of feed system of base mold for washing machine using CAE (사출성형 CAE를 이용한 세탁기용 Base 성형용 금형의 유동 시스템 최적화)

  • Yoo, Min-ji;Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The position of the gate is one of the important factors for optimal injection molding. This is because inappropriate gate positions cannot fill the cavity uniformly, which can lead to defects such as contraction. In this study, CAE was performed on hot runner injection molding of the washing machine base and plasticity was compared by changing gate position from existing gate position. A total of two alternatives have been applied to compare the plasticity of the washing machine base according to its optimal gate position. The gate position of the improved molds and the gate position of the current mold is analyzed by injection molding analysis. The results of the fill time, the pressure at V/P switchover, clamping force, and deflection were compared. In washing machine base injection molding, the deflection was reduced by about 3.76% in the improved mold 2. In improved mold 1, the fill time during injection molding was reduced by 3.32% to enable uniform charging, and the clamping force was reduced by 31.24%. We have confirmed that the position of the gate can change the charging pressure and the clamping force and affect the quality and cost savings of the molded product.

Injection Molding Analysis for Narrow-Pitched FPC Connectors (협 피치 FPC 커넥터의 사출 성형 해석)

  • Yoon, Seon-Jin;Heo, Young-Moo;Han, Mu-kun;Jung, Min-young;Kang, Woo-Seung
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • The narrow-pitched connectors are of interest for small-scale devices such as smart phones because of theirs caling. We conducted an injection molding analysis and a warp analysis for 0.3mm and 0.5mm pitch FPC connectors. We obtained a volumetric shrinkage of 4.344%, a clamping force of 0.2529 tonne, a maximum injection pressure of 76.3 MPa as optimized molding conditions for the 0.3mm pitch FPC connector. We found that, compared with the traditional injection molding technique, the injection molding for narrow-pitched connectors comes with distinct features like low clamping force, high injection molding pressure, and narrow gate size. Adding to the optimization analysis, the deflection of 0.5mm pitch FPC connector was analyzed as well. A maximum deflection of 0.053mm was calculated, which the actual deflection of 0.062mm was compared to. The results deduced a relative error of 17%. We conclude that the deflection analysis along with the optimization analysis can be used as an effective tool to predict the behavior of narrow-pitch connectors although the relative error may need to improve.

  • PDF

A study on the drawing characteristics of drawbead by F.F.M (유한요소법에 의한 드로오비드 인출특성 연구)

  • 신양호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.42-47
    • /
    • 1997
  • In this study, the drawing characteristics of circular drawbead are examined with the plane strain elastic-plastic FE Method by varying the process variables such as friction coefficient, drawbead radius, and closing depth. Numerical analysis are carried out by 2-D elastic-plastic F.E.M. The results are compared with the existing experimental results about the drawing force, the die clamping force, and the strain distribution of upper and lower sheet faces

  • PDF

Quantitative analysis of effect of shrink fit in cold forging (냉간단조에서 금형 열박음 영향의 정량적 분석)

  • Li, Q.S.;Lee, M.C.;Jung, D.C.;Son, Y.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.119-123
    • /
    • 2009
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, shrink fit, dimension of ring, partition of die inert and clamping force on effective stress and circumferential stress are analyzed.

  • PDF

Quantitative Analysis of Effect of Shrink Fit in Cold Forging (냉간단조에서 금형 열박음 영향의 정량적 분석)

  • Li, Qiushi;Kim, Min-Cheol;Jung, Dong-Chan;Son, Yo-Hun;Joun, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, magnitude of shrink fit, dimension of shrink ring, number of shrink rings, partition of die insert and clamping force on effective stress and circumferential stress are analyzed. It has shown that the number of shrink rings, magnitude of shrink fit, and Young's modulus of die insert material have strong influence on compressive circumferential stress in die insert but that the influence of the other design parameters is relatively weak.