• 제목/요약/키워드: Die bond

Search Result 42, Processing Time 0.026 seconds

IEEE 1500 Wrapper Design Technique for Pre/Post Bond Testing of TSV based 3D IC (TSV 기반 3D IC Pre/Post Bond 테스트를 위한 IEEE 1500 래퍼 설계기술)

  • Oh, Jungsub;Jung, Jihun;Park, Sungju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.131-136
    • /
    • 2013
  • TSV based 3D ICs have been widely developed with new problems at die and IC levels. It is imperative to test at post-bond as well as pre-bond to achieve high reliability and yield. This paper introduces a new testable design technique which not only test microscopic defects at TSV input/output contact at a die but also test interconnect defects at a stacked IC. IEEE 1500 wrapper cells are augmented and through at-speed tests for pre-bond die and post-bond IC, known-good-die and defect free 3D IC can be massively manufactured+.

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.

AN EXPERIMENTAL STUDY ON THE FILM THICKNESS OF RESIN LUTING CEMENTS (치과용 레진 시멘트의 피막도에 관한 실험적 연구)

  • Cho Kook-Hyeon;Song Chang-Yong;Song Kwang-Yeob;Park Chan-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.212-224
    • /
    • 1994
  • The purpose of this study was to evaluate and compare film thickness of five kinds of resin luting cements [Comspan, Panavia Ex, Maryland bridge adhesive, All-bond C & B cementation kit, and Super-bond C & B]. Zinc-phosphate cement and glass-ionomer cement were used as the control group. In order to measure the film thickness the methods used were in broad compliance with ADA Specification No. 8, a tapered-die system that simulates clinical conditions more closely, and the connected tapered-die system that simulates bridge conditions. The inorganic filler size of resin cements was also examined with scanning electron micrographs. The results were obtained as follows ; 1. The film thickness of resin cements was increased in the order of Comspan, Panavia Ex, Super-bond C & B, Maryland bridge adhesive, and All-bond C & B cementation kit. Maryland bridge adhesive and All-bond C & B cementation kit showed significantly higher film thickness than the control group(p<0.01). 2. For all resin cements, there was a significant difference of film thickness between the ADA method and the tapered-die system. Generally, the tapered-die system demonstrated lower film thickness than the ADA method(p<0.01). 3. There was no significant difference in film thickness between the tapered-die system and the tapered-die bridge system in all resin cements(p<0.01). 4. The scanning electron microscope showed that the cement with larger filler had a tendency to be higher in film thickness.

  • PDF

Effect of Die Attach Process Variation on LED Device Thermal Resistance Property (Die attach 공정조건에 따른 LED 소자의 열 저항 특성 변화)

  • Song, Hye-Jeong;Cho, Hyun-Min;Lee, Seung-Ik;Lee, Cheol-Kyun;Shin, Mu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.390-391
    • /
    • 2007
  • LED Packaging 과정 중 Die bond 재료로 Silver epoxy를 사용하여 Packaging 한 후 T3Ster 장비로 열 저항 값(Rth)을 측정하였다. Silver epoxy 의 접착 두께를 조절하여 열 저항 값을 측정하였고, 열전도도 값이 다른 Silver epoxy를 사용하여 열 저항 값을 측정하였다. Silver epoxy 접착 두께가 충분하여 Chip 전면에 고루 분포되었을 경우 그렇지 않은 경우보다 평균 4.8K/W 낮은 13.23K/W의 열 저항 값을 나타내었고, 열전도도가 높은 Silver epoxy 일수록 열전도도가 낮은 재료보다 평균 4.1K/W 낮은 12K/W의 열 저항 값을 나타내었다.

  • PDF

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.61-73
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology.

  • PDF

Critical Cleaning Requirements for Flip Chip Packages

  • Bixenman, Mike;Miller, Erik
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.43-55
    • /
    • 2000
  • In traditional electronic packages the die and the substrate are interconnected with fine wire. Wire bonding technology is limited to bond pads around the peripheral of the die. As the demand for I/O increases, there will be limitations with wire bonding technology. Flip chip technology eliminates the need for wire bonding by redistributing the bond pads over the entire surface of the die. Instead of wires, the die is attached to the substrate utilizing a direct solder connection. Although several steps and processes are eliminated when utilizing flip chip technology, there are several new problems that must be overcome. The main issue is the mismatch in the coefficient of thermal expansion (CTE) of the silicon die and the substrate. This mismatch will cause premature solder Joint failure. This issue can be compensated for by the use of an underfill material between the die and the substrate. Underfill helps to extend the working life of the device by providing environmental protection and structural integrity. Flux residues may interfere with the flow of underfill encapsulants causing gross solder voids and premature failure of the solder connection. Furthermore, flux residues may chemically react with the underfill polymer causing a change in its mechanical and thermal properties. As flip chip packages decrease in size, cleaning becomes more challenging. While package size continues to decrease, the total number of 1/0 continue to increase. As the I/O increases, the array density of the package increases and as the array density increases, the pitch decreases. If the pitch is decreasing, the standoff is also decreasing. This paper will present the keys to successful flip chip cleaning processes. Process parameters such as time, temperature, solvency, and impingement energy required for successful cleaning will be addressed. Flip chip packages will be cleaned and subjected to JEDEC level 3 testing, followed by accelerated stress testing. The devices will then be analyzed using acoustic microscopy and the results and conclusions reported.

  • PDF

A Study on the Drawability of Clad Sheet Metal (STS304-A1050-STS304) by Warm Draw Die (온간금형에 의한 클래드판재(STS304-A1050-STS304)의 드로잉성 연구)

  • Ryu H. Y.;Kim J. H.;Ryu J. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.136-143
    • /
    • 2002
  • Warm draw die technique which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical and square cup drawing of stainless-aluminum clad sheets. In experiments the temperature of die and blank holder is varied from room temperature to $180^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch comer area. Test materials chosen for experiments are STS304-A1050-STS304 clad sheets. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio and relative drawing depth as well as quality of drawn cups(distribution of thickness)are investigated and validity of warm drawing process is also discussed. No separation between each laminated material after drawing occurred through inspection by microscope as well as application of penetrant remover and bond strength test. Therefore, warm forming technique was confirmed to give better results in deep drawing of stainless clad sheet metal.

  • PDF

A Study on Magnetic Abrasive (자기 연마재에 관한 연구)

  • Kim, Hee-Nam
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.44-47
    • /
    • 2008
  • The magnetic polishing is the useful method to finish some machinery fabrications by using magnetic power. This method is one of the precision techniques and has an aim for clean technology in the transportation of the pure gas in the clean pipes. The magnetic abrasive polishing method is not so common in the field of machine that it is not known to widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. Therefore, in this paper we deals with the development of the magnetic abrasive with the use of Sr-Ferrite. In this development, abrasive grain A has been made by using the resin bond fabricated at low temperature. And magnetic abrasive powder was fabricated from the Sr-Ferrite which was crushed into 200 mesh. The XRD analysis result shows that only A abrasive and Sr-Ferrite crystal peaks were detected, explaining that resin bond was not any more to contribute chemical reaction. From SEM analysis, we found that A abrasive and Sr-Ferrite were strongly bonding with each other.

  • PDF

High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure (Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술)

  • Choi, Jinseok;An, Sung Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).

Development of Multi-Porous Diamond Wheel for Smooth and Mirror Finishing of Die Materials (금형재료의 정밀연삭을 위한 다기공 다이아몬드 숫돌의 개발)

  • 허성중
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.6
    • /
    • pp.144-152
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted to be studied in this paper. Wheels, that are employed for the smooth and mirrow finishing of die materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond abrasive grains were bonded firmly by a melamine to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work sufaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are explained.

  • PDF