• Title/Summary/Keyword: Die Deformation

Search Result 560, Processing Time 0.023 seconds

Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region (과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발)

  • 옥명렬;서진유;홍경태
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Recently, various bulk metallic glasses (BMG's) having good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. By using the viscous flow, the very low pressure is needed to deform the materials. In this study, we investigated the structural transition and deformation behavior of Vitreloy 1 (Zr/sub 41.2/Ti/sub 13.8/Cu/sub 12.5/Ni/sub 10/Be/sub 22.5/) using TMA and DSC. We applied the results to the micro forming process. The forming condition was chosen based on the viscosity data from TMA, and Si wafer with micro patterns on the surface was used as a forming die. The deformed surface was analyzed by SEM and 3D Surface Profiling System. The alloy showed good replication of the patterns. Quantitative measurement of roughness was useful to evaluate the replication. Surface condition of the deformed surface was determined by the initial surface condition.

A Study of Algorithm for Press Layout Setup using Product design Data (제품 설계 데이터를 이용한 프레스 금형 Layout 설정을 위한 알고리즘에 관한 연구)

  • 이상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.391-396
    • /
    • 2000
  • Today most companies are designing their automobile shapes by using 3 dimensional CAD software, CATIA. And they used to design 2 dimensional press dies to do some elastic work on their products, but they are currently trying to make use of dimensional software, Pro-Engineer. In this case, they have to change the 3 dimensional product design data to the proper format data for the following process. This paper will show the data loss and the deformation during data transfer between CATIA and Pro-Engineer, and then suggest a solution for these problems. Product's surface will be automatically placed by automatic press tipping angle setting in CATIA to prevent the product from being stuck in the press die. The 2 dimensional section view which is based on the tipping angle setting is created by Z-map. And, to remove the data loss and the data deformation in pro-Engineer, the product surface are delivered to the next process after it is changed to the 2 dimensional Z-map curves in CATIA. finally, this paper suggests an algorithm to develop the automatic design program for the press layout which regenerates product shape surface from the previous process.

  • PDF

Experimental Study for Enhancement of Material Strength In Cold Cross Wedge Rolling Process (냉간 전조압연 공정에서의 성형조건에 따른 재료의 물성변화분석)

  • Yoon D. J.;Kim I. H.;Choi S. O.;Lim S. J.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.319-324
    • /
    • 2004
  • Cross wedge rolling process is utilized to manufacture multi-stepped axis symmetrical parts. This process is generally performed under high temperature conditions in order to induce serious deformation. But cold cross wedge rolling process has been rarely studied due to the limits of deformation. Recently, the cold cross wedge rolling process has been utilized to enhance the material strength in specified parts of manufactured products. In this paper, experimental researches were carried out with various forming conditions of cold cross wedge rolling process in order to suggest the design guidance to make preform for cold cross wedge rolling. The tensile strength and the surface hardness of specified region were compared to that of initial material with the variation of the area reduction and the rotational speed of rolling die. With respect to the area reduction, the maximum tensile strength was linearly increased and the surface hardness was rapidly increased within lower percent of area reduction. The surface hardness was saturated over the rotational die speed of 0.8 RPM.

  • PDF

A Study of Algorithm for Press Layout Setup using Product Design Data (제품 설계 데이터를 이용한 프레스 금형 레이아웃 설정을 위한 알고리즘에 관한 연구)

  • 이상준;이성수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.38-44
    • /
    • 2002
  • Today most companies are designing their automobile shapes by using 3 dimensional CAD software, CATIA. And they used to design 2 dimensional press dies to do some elastic work on their products, but they are currently trying to make use of 3 dimensional software, Pro-Engineer. In this case, they have to change the 3 dimensional product design data to the proper format data for the following process. This paper will show the data loss and the deformation during data transfer between CATIA and Pro-Engineer, and then suggest a solution for these problems. Product's surface will be automatically placed by automatic press tipping angle setting in CATIA to prevent the product from being stuck m the press die. The 2 dimensional section view which is based on the tipping angle setting is created by Z-map. And, to remove the data loss and the data deformation in Pro-Engineer, the product surface are delivered to the next process after it is changed to the 2 dimensional Z-map curves in CATIA. Finally, this paper suggests an algorithm to develop the automatic design program for the press layout which regenerates product shape surface from the previous process.

A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass (Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구)

  • Son, Seon-Cheon;Park, Kyu-Yeol;Na, Young-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).

Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging (다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증)

  • Hwang, Won-Seok;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

Finite Element Analysis Design of Axisymmetric Deep Drawing Process by Local Heating (국소 가열 방법을 이용한 2단계 축대칭 디프 드로잉 공정의 해석 및 설계)

  • Lee, Dong-Woo;Song, In-Seob;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 1993
  • The study is concerned with finite element analysis and design of axisymmetric deep drawing by local heating. When the bottom shape of a cup is not flat but in complex-shaped, i.e., hemispherical, the cup cannot be drawn in one or two processes in the conventional deep drawing process and the limit drawing ratio is limited as well. By introducing local heating selectively with regards to the heating position, the formability of the sheet metal can be greatly increased with the reduced number of processes. In the Process analysisthe rigid- viscoplastic finite element method is employed and the temperature effect is incorporated. Bishop's step-wise decoupled method is employed to analyze the thermomechanical interaction between deformation and heat transfer. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed for various combinations of heat application in the punch and the die. At the first stage of deep drawing stretch forming is practically carried out by firmly pressing the blankholder with the punch and the die heated at various levels of temperature. Then at the second stage the same cup is drawn for the saame or different combination of temperature. From the computation, it has thus been shown that the fromability of a cup is greatly increased in two-stage deep drawing with increased limet drawing ratio.

  • PDF

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

Analysis of Springback and Die Material Suitability in the UHSS Sheet Forming Process (초고강도 강판 성형 시의 스프링백 해석 및 금형 소재 적합성 검토)

  • Oh, I.S.;Yun, D.Y.;Cho, J.H.;Lee, M.G.;Kim, H.Y.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • In this study, formability and springback behavior of 1.5 GPa grade ultra-high strength steel (UHSS) sheet were predicted through the finite element simulation, and structural stability of the forming dies was verified by the coupled forming-structural analysis. Uniaxial tension and uniaxial tension-compression tests were performed to obtain experimental data for modeling the springback properties of the sheet material. The springback values predicted by simulation were compared with those from actual measurements. The results calculated from the kinematic hardening model were found to be much more accurate than those from the isotropic hardening model. Deformation of the forming die and springback of the product were calculated by the coupled forming-structural analysis. The higher the strength of the die material, the smaller the surface displacement of the die and the springback of the product. The internal stresses of the dies made of three materials, FC300, FCD550 and STD11 were compared with the yield stress of each material. The results provided a basis for determining the most suitable material for each part of the die set. As a result, simulation techniques have been established for predicting formability and springback in the UHSS sheet forming process.

A study on the design and manufacture of test work drawing die (Test Work 드로잉 금형의 설계 및 제작에 관한 연구)

  • Lee, Chun-Kyu;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 2018
  • It was analyzed and experimented on the change of the material thickness according to the size of the "R" of the punch and die corners using the material of SCP-1 0.25mm As a result, the following conclusions were obtained. Tensile strength analysis and safety analysis of materials are very important process for each process in strip layout, and Through this, the Influx of material and the deformation of the material were found. As a result of safety analysis and tensile thickness analysis, when the corner R of the punch was 0.3 mm and the edge R of the die was 1.0 mm The inflow of the material was not smooth, and the thickness of the corner part became 0.2 mm, causing cracks. when the corner R of the punch was 0.5 mm and the edge R of the die was 1.5 mm The inflow of the material was smooth, The thickness of the corners of the product is 0.21mm and It was considered that cracks do not occur when the thickness of the bottom surface and the body part becomes thin. The results obtained by applying the results obtained from the analysis, In Experimental Condition 1, a crack occurred in the same part of the analysis In Experimental Condition 2, the flow of the material was smooth and the drawing processing could be performed without generating cracks.