• Title/Summary/Keyword: Die Deformation

Search Result 560, Processing Time 0.022 seconds

Steady-state finite element analysis of three-dimensional extrusion of sections through square die (평금형을 통한 3차원 압출의 정상상태 유한요소해석)

  • 이승훈;이춘만
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.231-234
    • /
    • 1998
  • This study presents steady-state finite element analysis of three-dimensional hot extrusion of sections through square dies. The objective of this study is to develop a steady-state finite element method for hot extrusion through square dies, and to provide theoretical basis for the optimal die design and process control in the extrusion technology. In the present work, steady-state assumption is applied to both analyses of deformation and temperature. The analysis of temperature distribution includes heat transfer. Convection like element is adopted for the heat transfer analysis between billet and container, and also billet and die. Distributions of temperature, effective strain rate, velocity and mean stress are discussed to design extrusion die effectively.

  • PDF

Dimensional accuracy and ejecting stage in cold forging (냉간단조의 Ejecting 공정이 치수정밀도에 미치는 영향)

  • Chun S. H.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.338-341
    • /
    • 2004
  • The dimension of forged part is different with the die dimension by the various effects, such as, elastic deformation and thermal effect. And, the difference amounts are not same according to the forging conditions, for example, forging mode, flow stress, etc. Therefore, the use of FEA is effective to predict and update the required die dimension. However, the variables for FE simulation are also as many as variables in the experiment. The variables give very much effect to the accuracy of FE results. At first, the material model is very deeply affected to the estimated dimension of forged part. And the considering of loading and ejecting stages is also important to increase the dimensional accuracy. The experiment and FEA are performed to investigate the dimensional changes and accuracy in cold forging. Two types of upsetting are used to survey the effects of forging mode and stages.

  • PDF

FEM Analysis of Void Closure Behavior during Open Die Forging of Rectangular Billets (사각 빌렛 자유단조시 내부기공폐쇄거동 유한요소해석)

  • 천명식;류종수;문영훈
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • Finite element analysis of open die forging process to make rectangular billet has been performed in this study. Three dimensional rigid-plastic finite element method was used to analyze the effects of process variables, forging pass design and die configurations on the void closure phenomena to maximize the internal deformation for better structural homogeneity and center-line consolidation of the rectangular billet. The effect of anvil width ratio, anvil pitch, anvil shape and number of pass has been estimated by the degree of void closure ratio. Although it is difficult to optimize process parameters in the operational environments, favourable process conditions are suggested for better product quality.

Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique (형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인)

  • Kang, K.H.;Kwak, J.H.;Bae, S.B.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

A Study on the Prediction of Fatigue Life in the Axi-symmetric Extrusion Die (축대칭 압출금형의 피로수명예측에 관한 연구)

  • Ahn, S.H.;Kim, T.H.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.80-87
    • /
    • 1996
  • The present paper will give some results of the fatigue behavior of typical axi-symmetric forward extrusion die. The extrusion process is analyzed by rigid-plastic FEM and the deformation analysis of extrusion die is conducted by elasto-plastic FEM. To approach the crack problem LEFM (Linear Elastic Fracture Mechanics) is introduced. Using special element in order to conside the sigularity of stress/ strain in the vicinity of the crack tip, stress intensity factor and the effective stress intensity factor is calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law and maximum principal criterion to these data, then, the angle and the direction of fatigue crack propagation is simulated. In result, it is proved that the simulated fatigue crack propagates in the zigzag path along the radial direction and fatigue life of the extrusion die is evaluated by using the computed crack growth rate.

  • PDF

A Study on the Forming Characteristics of Radial Extrusions (레이디얼압출의 성형특성에 관한 연구)

  • 이수형;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

Characteristics of Bending Deformation in Aluminum Rectangular Bar by Press Die (알루미늄 각재의 프레스 굽힘 변형 특성)

  • Kim, K.S.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • In the recent years, the production of light-weight products has become important because of increasing demands for the energy savings through weight reduction. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. Bending characteristics of Al rectangular tube with hollow and solid section has been analyzed by FE analysis in press bending with wing-die. Bending stress is affected by punch stroke and rotation of wing-die. There were different sectional sagging characteristics between the solid rectangle section and the hollow rectangle section.

Study on the Hydrofilm Extrusion through Conically Converging Dies (원추형 금형을 통한 박막식 정수압 압출 에 관한 연구)

  • 신동헌;조남선;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.168-174
    • /
    • 1983
  • The study is concerned with an analysis on the hydrofilm extrusion through conical dies. The upper bound method is adopted for the analysis of metal deformation in connection with hydrodynamic lubrication theory for the lubricant in order to determine the extrusion pressure for some variables such as reduction of area, die cone angle. In the upper bound method, a kinematically admissible velocity field is found by assuming proper streamlines and applying the flow function concept to the region of plastic deformation. The effect of work hardening is incorporated approximately by calculating the strains at the exit of the die. The experiments are carried out with the commercially pure aluminium for some chosen variables at room temperature. It is shown that the theoretical predictions are in good agreement with the experimental observations.

A meshfree method based on adaptive refinement method and its application for deformation analysis (변형해석을 위한 적응적 세분화방법에 기초한 무요소법)

  • Han, Kyu-Taek
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • The finite element method(FEM) presents some limitations when the mesh becomes highly distorted. For analysis of metal forming processes with large deformation, the conventional finite element method usually requires several remeshing operations due to severe mesh distortion. The new computational method developed in the recent years, usually designated by meshfree method, offers an attractive approach to avoid those time-consuming remeshing efforts. This new method uses a set of points to represent the problem domain with no need of an additional mesh. Also this new generation of computational method provides a higher rate of convergence than that of the conventional finite element methods. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and also to illustrate the efficiency of proposed method, several numerical examples are presented.

  • PDF