• Title/Summary/Keyword: Die Compensation

Search Result 47, Processing Time 0.031 seconds

Compensation Design to Reduce Springback in Sheet Metal Forming of 1.2GPa Ultra High Strength Steel (1.2GPa급 강판 판재 성형에서 스프링백 감소를 위한 금형 보상 설계)

  • Kwon, S.H.;Lee, H.S.;Lee, Y.S.;Kim, S.W.;Jung, C.Y.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.301-305
    • /
    • 2016
  • The manual modification of stamping die has widely been used in order to reduce springback after sheet metal forming. When UHSS (Ultra High Strength Steel) is used in sheet metal forming, the die design considering springback compensation is more difficult because higher strength sheet has more springback. In this study, the optimization method was used in order to design die geometry considering springback compensation after forming of 1.2GPa UHSS. Die geometries were defined as design variables and the springback distance from the die surface was conducted as object function in optimization process. The optimized die geometry considering springback compensation was performed using finite element and optimization analysis. The simulation results such as thickness distribution and springback amount were compared with measured data using 3D optical measurement system (GOM ARGUS, ATOS). And the prediction of springback amount showed a good agreement within test results.

Springback Control Using Automatic Die Compensation Module (금형자동보정방식을 이용한 스프링백현상 제어)

  • Choi, B.S.;Hwang, J.H.;Baek, I.K.;Lee, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.162-168
    • /
    • 2008
  • Recently surround molding parts using stainless steel are applied to international and domestic high grade vehicles, but there are great difficulties in die manufacture because of springback and twist after forming process. To solve this problem, finding the method of reduction springback is very important. In this study the springback which might happen during making a die that produce stainless steel surround molding parts is predicted and the geometry of die which satisfy the tolerance between product and panel after forming and springback will be suggested using automatic die compensation module.

  • PDF

Springback Control of an Automotive Surround Molding Part Using Automatic Die Compensation Module (금형 자동 보정 방식을 이용한 자동차 서라운드 몰딩 부품의 스프링백 현상 제어)

  • Lee, D.Y.;Choi, B.S.;Hwang, J.H.;Baek, I.K.;Choi, K.Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.210-216
    • /
    • 2009
  • Springback, an elastic material recovery after the unloading of stamping tools, causes variations and inconsistencies of final part dimensions. Recently, narrow and long surround molding parts around door frame are applied to high grade automobiles, but there are great difficulties in their die development, construction and tryout because of several springback modes including vertical movement and twist during flange forming process of them. So it is very important to predict springback's quantities of a surround molding part and, moreover, to compensate the die for them adequately, when they can't be corrected by the restrike operation. This paper presents a case study based on the die design for a surround molding part made of stainless steel. The forming and springback predictions, carried out using PAMSTAMP 2G, are reported and compared with the measurement data of the prototype. The predicted springback results were acceptable, so the processes of compensating die using Automatic Die Compensation Module of PAMSTAMP 2G were performed iteratively until the tolerances between the designed shape and the simulation data were satisfied.

Improvement of Form Accuracy in Curved Dies and Molds Using Compensation of Finishing Tool (연마 공구의 압력 보정에 의한 곡면 금형의 형상 정밀도 향상)

  • 임동재;정해도;안중환;안대균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.866-869
    • /
    • 2000
  • The finishing process for die is an important process because it has influence on final quality of products. And it is difficult to automatize finishing process so that the process has depended on expert's skill until now. However, recently a study on development of die automatic finishing machine has been progressed, and actually this machine is applied to fabrication of die. But die automatic finishing machine has the problems such as low supply rate and high machine price. In this paper 3-axis machine was applied to the die finishing. And to improve form accuracy of die finishing path was regenerated. The finishing path considered tilting of finishing tool. and variation of machining force with contacting point between finishing and workpiece.

  • PDF

Automatic Tool Compensation for an UHSS Automotive Component Using a Compensation Module (금형보정 모듈을 이용한 초고강도강 자동차부품용 프레스금형의 자동보정)

  • Lee, J.H.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • In the current study, automatic tool compensation is accomplished by using a finite element stamping analysis for a center roof rail made of UHSS in order to satisfy the specifications for shape accuracy. The initial blank shape is calculated from a finite element inverse analysis and potential forming defects such as tearing and wrinkling are determined by the finite element stamping analysis based on the initial tool shape. The blank shape is optimized to meet the shape requirements of the final product with the stamping analysis, and die compensation is determined with the information about springback. The specifications for shape accuracy were successfully achieved by the proposed die compensation scheme using the finite element stamping analysis. The current study demonstrates that the compensation tendency is similar when the proposed scheme is used or when the compensation is performed by trial and error in the press-shop. This similarity verifies that the automatic compensation scheme can be used effectively in the first stage of tool design especially for components made from UHSS.

Numerical and Experimental Study for Improvement of Formability in Flexible Forming Process (가변성형공정에서 성형성 향상을 위한 해석 및 실험적 연구)

  • Heo, S.C.;Seo, Y.H.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.432-440
    • /
    • 2012
  • In this article, the design of the flexible forming process considering die shape compensation using an iterative over-bending method based on numerical simulation was conducted. In this method, the springback shape obtained from the final step of the first forming simulation is compared with the desired objective shape, and a shape error is calculated as a vector norm with three-dimensional coordinates. The error vector is inversely added to the objective surface to compensate both the upper and lower flexible die configurations. The flexible die shapes are recalculated and the punch arrays are adjusted according to the over-bent forming surface. These iterative procedures are repeated until the shape error variation converges to a small value. In addition, experimental verification was conducted using a 2000-kN flexible forming apparatus for thick plates. Finally, the configuration of the prototype obtained from the experiment was compared with the numerical simulation results, which had springback compensation. It is confirmed that the proposed method for compensating for the forming error could be used in the design of flexible forming of thick-curved plates.

Issues on the Machining of 3D-Profile for Automotive Press Dies (자동차 프레스 금형을 위한 3차원 윤곽가공의 문제점)

  • Lee S. H.;Chung Y. C.;Ju S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.19-25
    • /
    • 2002
  • Profile machining using cutter diameter compensation is widely used in die and mould manufacturing. Especially automotive die makers try to use 3D-profile machining for trimming or flange dies. But the technological requirements and implementation issues haven't been defined. In this paper we summarized the requirements and issues of 3D-profile machining. Approximation of input profiles into sequences of line and helical arc is the first major issue. The second major issue is removing cutter interference from the approximated curves holding z-values when the maximum cutter diameter is given. Keeping constant machining width, local machining, path linking problems and several detail technological requirements are also discussed.

  • PDF

Issues on the Machining of 3D-Profile for Automotive Press Dies (자동차 프레스 금형을 위한 3차원 윤곽가공의 문제점)

  • 이상헌;정연찬;주상윤
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.141-147
    • /
    • 2002
  • Profile machining using cutter diameter compensation is widely used in die and mould manufacturing. Especially automotive die makers try to use 3D-profile machining for trimming or flange dies. But the technological requirements and implementation issues haven't been defined. In this paper we summarized the requirements and issues of 3D-profile machining. Approximation of input profiles into sequences of line and helical arc is the first major issue. The second major issue is removing cutter inter- ference from the approximated curves holding z-values when the maximum cutter diameter is given. Keeping constant machining width, local machining, path linking problems and several detail technological requirements are also discussed.

A Study on Compensation for tool deformation machining errors in micro end-milling (마이크로 엔드밀링에서 공구변형 가공오차 보상에 관한 연구)

  • Jong-In Son;Byeong-Uk Song
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.24-32
    • /
    • 2023
  • In this study, we introduce research aimed at minimizing machining errors without compromising productivity by compensating for the machining errors caused by tool deformation. Our approach experimentally establishes the direct correlation between cutting depth and machining error, and creates predictive models using mathematical functions. This method allows for the prediction of compensated cutting depths to obtain the desired cutting profiles, thereby maximizing the compensation of machining errors in the cutting process.

Experimental investigation on the flow control in non-axisym- metric flat die extrusion-II (비축대칭 평금형 압출에서 유동제어에 관한 실험적 연구-II)

  • 김영호;배원병;강범수;박재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.130-136
    • /
    • 1997
  • The velocity distrubution at the exit of extrusion die depends on the width of bearing land very much. When uniform bearing land without flow guide is used, the material which is extended through the same die does not, deflect to the constant direction, but when the flow guide is equipped and then the volume compensation is done accurately, the material deflects to one constant direction. Therfore, the part of problem can be known exactly, and extrusion products of straight shape can be produced by the corrected bearing land width.

  • PDF