• Title/Summary/Keyword: Dicyclopentadiene (DCPD)

Search Result 25, Processing Time 0.024 seconds

Interfacial and Mechanical Properties of MGF Reinforced p-DCPD Composites with Surface Treatments (MGF 표면처리에 따른 p-DCPD 복합재료의 계면 및 기계적 특성 연구)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Ha, Jung-Chan;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2016
  • p-DCPD (poly dicyclopentadiene) is the resin that the versatile mechanical properties can be changeable via the control of inner monomer and catalysts. In this work, to improve the strength of composites, surface treated MGF (milled glass fiber) was used as an reinforcement in p-DCPD by molybdenum (Mo) catalyst matrix. The optimum concentration of surface treatment was obtained and the cohesion of MGF themselves increased with concentration. In case of 0.2 wt% silane concentration, the maximized mechanical properties of MGF/p-DCPD composite exhibited because of minimized MGF cohesion. When butyl silane showing minimizing cohesion was used as the optimized alkyl length, high tensile and flexure strength exhibited due to the steric hindrance effect among MGFs. Mechanical and their fractured surfaces of MGF/p-DCPD composites was compared for 4 different chemical functional groups. Norbornene functional groups containing similar chemical structure to DCPD matrix exhibited higher interfacial adhesion between MGFs and DCPD matrix.

Characterization of Healing Agent Candidates for Self-healing Applications (자가손상복구용 복구액의 특성 분석)

  • Liu, Xing;Lee, Jong-Keun;Kim, Jung-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1668-1673
    • /
    • 2008
  • 고분자 복합재 구조물의 경우 일반적으로 여러 층의 단층(laminar)이 적층된 구조로 이루어져 있으며, 모재균열, 층간분리 및 섬유파단과 같은 손상이 발생되어 파단에 이르게 된다. 자가손상 복구기법은 복합소재의 열경화성 수지 내에 손상복구액을 포함하고 있는 마이크로캡슐과 촉매를 투입하여 외부의 도움 없이 손상을 치료할 수 있는 방법으로, 소재의 디자인에 있어서 새로운 페러다임을 제공할 수 있는 것으로 현재 많은 연구가 진행되고 있다. 본 연구에서는 ENB(5-ethylidene-2-norbornene)와 DCPD(dicyclopentadiene)에 대하여 DMA(dynamic mechanical analysis)와 DSC(differential scanning calorimetry)를 이용하여 특성을 분석하였다. 또한 그들의 ROMP(ring-opening metathesis polymerization)반응과의 관계를 조사하였으며, ENB와 DCPD 블렌드에 대한 복구액으로서의 특성도 조사하였다. 본 연구실에서 합성된 두 가지 다른 종류의 ROMP 경화제에 대한 실제 자가손상복구에으로서의 적용상 특성도 연구하였다.

  • PDF

Synthesis and Application of Sorbic Acid Grafted Hydrogenated Dicyclopentadiene Hydrocarbon Resin (소르빅산 변성 수소첨가 DCPD계 석유수지의 합성 및 응용)

  • Kong, Won Suk;Park, Jun Hyo;Yoon, Ho Gyu;Lee, Jae Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • Hydrocarbon resins, which are defined as low molecular weight, amorphous, and thermoplastic polymers, are widely used as tackifier for various types of adhesives, as processing aids in rubber compounds, and as modifiers for plastics polymers such as isotactic polypropylene. Typically, hydrocarbon resins are non-polar, and thus highly compatible with non-polar rubbers and polymer. However, they are poorly compatible with polar system, such as acrylic copolymer, polyurethanes, and polyamides. Moreover, recently the raw materials of hydrocarbon resin from naphtha cracking had been decreased because of light feed cracking such as gas cracking. To overcome this problem, in this study, novel hydrocarbon resins were designed to have a highly polar chemical structure which material is sustainable. And, it was successfully synthesized by Diels-Alder reaction of dicyclopentadiene monomer and sorbic acid from blueberry as renewable resources. Acrylic resins were formulated with various tackifiers solution including sorbic acid grafted hydrogenated dicyclopentadiene hydrocarbon resins in acrylic adhesive and rolling ball tack, loop tack, $180^{\circ}$ peel adhesion strength, and shear adhesion strength were measured. The properties depend on the softening point and polar content of tackifiers.

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.

A Study on the Synthesis of Tricyclopentadiene Using Ionic Liquid Catalysts (이온성 액체 촉매를 이용한 Tricyclopentadiene 합성에 관한 연구)

  • Kim, Su-Jung;Han, Jeongsik;Jeon, Jong-Ki;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.593-597
    • /
    • 2015
  • Tricyclopentadiene (TCPD) as a next generation high density fuel was synthesized by Diels-Alder oligomerization reaction of DCPD. TCPD was prepared by ionic liquid (IL) catalysts with combination of cationic and anionic precursors. Two kinds of anionic precursors such as copper(I) chloride (CuCl) and iron(III) chloride ($FeCl_3$) and cationic precursors such as triethylamine hydrochloride (TEAC) and 1-butyl-3-methylimidazolium chloride (BMIC) were used. The preparation of TCPD using IL catalyst was superior to that using Diels-Alder reaction in terms of DCPD conversion and TCPD yield. In addition, TCPD yield was correlated with Lewis acidity by changing the ratio of anionic and cationic precursors. The TCPD yield was higher when using CuCl as anionic precursor than that of using $FeCl_3$. Control of Lewis acidity by changing the molar ratio of anionic and cationic precursors could further improve TCPD yield as well.

Manufacturing Process of Microcapsules for Autonomic Damage Repair of Polymeric Composites (폴리머 복합재의 자가치료용 마이크로캡슐 제조공정 연구)

  • ;;;;M.R. Kessler;S.R. White
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.32-39
    • /
    • 2002
  • This study focused on the introduction of processing procedure for microcapsules loaded with the healing agent and then microcapsules with the healing agent were manufactured by experiments. The DCPD (dicyclopentadiene) was used for the healing agent and the shell of microcapsules was consisted of urea-formaldehyde resin. The magnitude and the site distribution of microcapsules were measured by a particle size analyzer using laser diffraction technique. Thermal analysis was conducted by using a DSC fur the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. Also thermal stability was investigated by using a TGA under continuous and isothermal heating conditions far the healing agent, microcapsules without the healing agent, microcapsules with the healing agent. According to the results. microcapsules with the healing agent were verified to be so thermally stable that the healing agent could not evaporate until the shell of microcapsules were burned.

Evaluation of Interfacial and Mechanical Properties of GF/p-DCPD Composites with Different Sizing Agents (사이징제에 따른 유리섬유/폴리디사이클로펜타디엔 복합재료의 계면물성 및 기계적 물성 평가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Shin, Pyeong-Su;Park, Ha-Seung;Baek, Yeong-Min;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • Interfacial and mechanical properties of neat and two sizing agents coated glass fiber (GF)/polydicyclopentadiene (p-DCPD) composites were evaluated at room and low temperatures, $25^{\circ}C$ and $-20^{\circ}C$. Sizing agents of GFs were extracted using acetone and compared via FT-IR. Surface energy and work of adhesion between GFs and p-DCPD were calculated by dynamic contact angle measurement. Mechanical properties of different GFs were determined using single fiber tensile test and interfacial properties of single GF reinforced DCPD strip were determined using cyclic loading tensile test. Mechanical properties of GFs/p-DCPD composites at room and low temperatures were determined using tensile, compressive, and Izod impact tests. Interfacial and mechanical properties were different with sizing agents of GFs and the optimized condition of sizing agent was found.

Effect of Composition of EVA-based Hot-Melt Adhesives on Adhesive Strength (EVA계 핫멜트 접착제의 조성이 접착력에 미치는 영향)

  • Lee, Jung-Joon;Song, Yu-Hyun;Lim, Sang-Kyun;Park, Dae-Soon;Sung, Ick-Kyung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.155-161
    • /
    • 2010
  • A series of ethylene vinyl acetate (EVA) based hot melt adhesives containing different types and compositions of tackifier resins were prepared to investigate their rheological behavior and T-peel adhesion strength on polyurethane (PU) elastomeric sheets. C5 aliphatic hydrocarbon resin (C5 resin), C9 aromatic hydrocarbon resin (C9 resin), hydrogenated dicyclopentadiene resin ($H_2$-DCPD resin), and dicyclopentadiene and acrylic monomer copolymer resin (DCPD-acrylic resin) were used as the tackifiers for the hot melt adhesives. To determine the polarity of the tackifiers, their oxygen contents were analyzed, and the DCPDacrylic resin was found to contain an oxygen content higher than the other tackifiers. Only the DCPD-acrylic resin showed complete miscibility with EVA and the homogeneous phase of the hot melt adhesive blends at all compositions. The T-peel adhesion strength between the hot melt adhesives and polyurethane elastomeric sheets was mainly affected by the polarity of the tackifier resins in the hot melt adhesives, rather than by the storage moduli, G', of the hot melt adhesives themselves.

Study on Manufacturing Process of Self-Healing Microcapsules for Damage Repair in Polymeric Composites (폴리머 복합재의 손상보수를 위한 자가치료용 마이크로캡슐 제조공정 연구)

  • 윤성호;박희원;소진호;홍순지;이종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.793-796
    • /
    • 2003
  • This study dealt with the manufacturing process of self-healing microcapsules for damage repair in polymeric composites. The microcapsule was consisted with a DCPD (dicyclopentadiene) as the healing agent and a urea-formaldehyde resin as the wall section. The size distribution of microcapsules were measured by a particle size analyzer using a laser diffraction technique. Thermal stability of microcapsules was investigated by using a TGA under continuous and isothermal heating conditions. According to the results, these microcapsules were verified to be to thermally stable and have a great potential to be applicable for damage repair in polymeric composites.

  • PDF

Study on Manufacturing Process Variables affecting on Characteristics of Autonomic Microcapsules (자가치료용 마이크로캡슐 특성에 영향을 미치는 제작공정 연구)

  • 윤성호;박희원;소진호;홍순지;이종근
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.169-172
    • /
    • 2003
  • Manufacturing process for autonomic microcapsules was introduced and autonomic microcapsules were manufactured by varying with various manufacturing process variables. Urea-formaldehyde resin was used for the wall of microcapsules and DCPD (dicyclopentadiene) was used for the self-healing agent. The characteristics of these microcapsules was evaluated through a particle size analyaer, an optical microscope, and a TGA. The various manufacturing process variables, such as pH and agitation speed of the emulsified solution, were considered to focus in this study. According to the results, the particle size distributions were affected on the agitation speed of the emulsified solution, and the thermal stability was influenced by pH of the emulsified solution.

  • PDF