• Title/Summary/Keyword: Dichlorosiliane

Search Result 3, Processing Time 0.015 seconds

Influence of DCS Post flow on the Properties of $\textrm{WSi}_{x}$ Thin films (DCS Post Flow가 $\textrm{WSi}_{x}$ 박막 특성에 미치는 영향)

  • 전양희;강성준;강희순
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.173-178
    • /
    • 2003
  • In this paper, we studied the physical and electrical characteristics of $\textrm{WSi}_{x}$ thin film with respect to the adoption of the DCS (dichlorosiliane) post flow and the variation of deposition temperature. XRD measurements show that as deposited thin film has a hexagonal structure regardless of deposition Process. However, we find that the phase of thin film has changed to a tetragonal structure after the heat treatment at $680^{\circ}C$. Adoption of DCS post flow and increment of deposition temperature result in the increments of Si/W composition ratio. These conditions also result in the increment of sheet resistance by the amount 3.0~4.2$\Omega$/$\square$, but give the tendency in the decrement of stress by 0.27~0.3 E10dyne/$\textrm{cm}^2$. We also find that the contact resistance of word line and bit line interconnection was decreased by the amount 5.33~16.43$\mu$$\Omega$-$\textrm{cm}^2$, when applying DCS post flow and increasing deposition temperature.

A Study on the Characteristics change of WSix Thin Films by S/H Life Time (S/H Life Time에 따른 WSix의 특성 변화에 관한 연구)

  • 정양희;강성준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.689-695
    • /
    • 2002
  • Film compositions are needed in semiconductor manufacturing for such diverse application as production tool qualifications and process development. Surface and interface information is generally provided with Auger electron spectroscopy(AES). In this paper, WSix films were analyzed for structural, electrical, and compositional properties of tungsten silicide thin films produced by low pressure chemical vapor deposition as a function of temperature, DCS post flow, shower head life time, and the silicon to tungsten ratios have been investigated. We find that Si/W composition ratio is increased in the surface and interface of WSix thin films by the DCS post flow process and increasing deposition temperature, respectively. The results obtained in this study are also applicable to process control of WSix deposition for memory device fabrication.

A Study on the Properties of WS $i_{x}$ Thin Film with Formation Conditions of Polycide (폴리사이드 형성 조건에 따른 WS $i_{x}$ 박막 특성에 관한 연구)

  • 정양희;강성준;김경원
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.371-377
    • /
    • 2003
  • We perform the physical analysis such that Si/W composition ratios and phosphorus distribution change in the W/S $i_{x}$ thin films according to phosphorus concentration of polysilicon and W $F_{6}$ flow rate for the formation of WS $i_{x}$ polycide used as a gate electrode. We report that these physical characteristics have effects on the contact resistance between word line and bit line in DRAM devices. RBS measurements show that for the samples having phosphorus concentrations of 4.75 and 6.0${\times}$10$^{2-}$ atoms/㎤ in polysilicon, by applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm, Si/W composition ratio has increases to 2.05∼2.24 and 2.01∼2.19, respectively. SIMS analysis give that phosphorus concentration of polysilicon for both samples have decreases after annealing, but phosphorus concentration of WS $i_{x}$ thin film has increases by applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm. The contact resistance between word line and bit line in the sample with phosphorus concentration of 6.0 ${\times}$ 10$^{20}$ atoms/㎤ in polysilicon is lower than the sample with 4.75 ${\times}$ 10$^{20}$ atoms/㎤ After applying W $F_{6}$ flow rates decreases from 4.5 to 3.5 sccm, the contact resistance has been improved dramatically from 10.1 to 2.3 $\mu$ $\Omega$-$\textrm{cm}^2$.