• Title/Summary/Keyword: Dicarboxylate complexes

Search Result 13, Processing Time 0.018 seconds

Synthesis and Crystal Structures of Zn(II)- and Mn(II)- Diphenyldicarboxylate Complexes with N-Donor Ligand

  • Koo, Bon Kweon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.321-326
    • /
    • 2016
  • Two new polymeric complexes, [Zn(dpa)(pyz)0.5]n (1; dpa = diphenate and pyz = pyrazine) and [Mn3(bpdc)3(py)4]n (2; bpdc = biphenyl-4,4'-dicarboxylate and py = pyridine) were successfully isolated by the hydro- and solvo-thermal technique, respectively. The complexes were characterized by elemental and thermal analysis, vibrational IR spectroscopy, and by single crystal x-ray structure determination. For 2, magnetic property was also investigated. Complex 1 is a two-dimensional layer structure consisting of a paddle-wheel building unit of Zn-dpa chains bridged by pyrazine. While, complex 2 consists of linear trimeric Mn3 cluster as building unit to form 3D network. In the complexes, dpa2− (1) and bpdc2−(2) ligands show a typical bis-monodendate bridging and two kinds of bridging modes; a typical bridging and chelating/bridging mode, respectively.

Synthesis of Some Palladium (II) Complexes of 1, 2-Diaminocyclohexane and Dicarboxylates as Cisplatin Analogues of Palladium Series

  • Kim, Jong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.336-342
    • /
    • 1992
  • Ten [$Pd^{II}$(dicarboxylato)(1, 2-diaminocyclohexane)] complexes were prepared after the antitumor-active Pt(II)1, 2-diaminocyclohexane complexes as the cisplatin analogues of palladium series. They were characterized by means of elemental analysis, IR and NMR spectroscopy. As a result, the dicarboxylate ligands were conformed to be chelated with Pd(II) within the scope studied. The stability differences beween the dicarboxylato complexes according to the chelate ring size could not be differentiated due to generally lower thermodynamic stability of the dicarboxylato Pd(II) complexes.

  • PDF

Synthesis and Crystal Structures of Mn(II)- and Ni(II)-Dicarboxylate Complexes with 1,10-Phenanthroline

  • Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2299-2304
    • /
    • 2012
  • Two new metal(II) complexes, $[Mn(dpa)(phen)(H_2O)_2]_n$ (1) ($H_2dpa$ = dephenic acid, phen = 1,10-phenanthroline) and $[Ni_2(nda)(phen)_2(H_2O)_6](nda)(H_2O)$ (2) ($H_2nda$ = 2,6-naphthalenedicarboxylic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. In complex 1, Mn(II) ion is six-coordinated, and Mn(II) ions are bridged by dpa ligands into 1D chains. While, the complex 2 is dimer and two Ni(II) ions are bridged by one nda ligand cooperated with the terminal ligand phen. In each complex, the dicarboxylate ligand is coordinated to metal(II) ions as a bis-monodentate.

Syntheses, Crystal Structures, and Spectral Properties of Two Coordination Compounds Based on 1,2-Bis(benzimidazolyl)benzene

  • Meng, Fa-Yan;Jiang, Bing-Li;Lin, Cui-Wu;Wang, Li;Tan, Xiao-He
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1017-1021
    • /
    • 2011
  • Two new benzimidazolyl-containing complexes have been synthesized by reactions of $Cu^{II}$ salts and 1,2-bis(benzimidazolyl) benzene ($H_2bbbz$) with two different dicarboxylate ligands. When phthalate acid ($H_2pt$) was employed as secondary ligand, a 0D molecular complex Cu$(H_2bbbz)(pt){\cdot}(H_2pt)$ (1)was furnished and when the secondary ligand was instead by a linear bridging ligand of terephthalic acid ($H_2tp$) a 1D zipper-like coordination polymer $[Cu(H_2bbbz)(tp){\cdot}2(C_2H_5OH){\cdot}H_2O]_n$ (2) was obtained, suggesting the structure-direction effect of the secondary dicarbxylate ligand. The preliminary investigation on the spectral properties of the complexes was also presented.

Synthesis of Silver Nanoparticles from the Decomposition of Silver(I) [bis(alkylthio)methylene]malonate Complexes

  • Lee, Euy-Jin;Piao, Longhai;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.60-64
    • /
    • 2012
  • Silver(I) [bis(alkylthio)methylene]malonates were synthesized from the reaction of silver nitrate and potassium [bis(alkylthio)methylene]malonates. The structures of the Ag complexes were characterized with nuclear magnetic resonance (NMR), inductively coupled plasma atomic emission spectrometry (ICP-AES) and elemental analysis. Ag nanoparticles (NPs) were obtained from the decomposition of the Ag complexes in 1,2-dichlorobenzene at $110^{\circ}C$ without an additional surfactant. The average sizes of the Ag NPs are in the range of 5.1-6.3 nm and could be controlled by varying the length of the alkyl chain. The optical properties, crystalline structure and surface composition of Ag NPs were characterized with ultraviolet-visible (UV-visible) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), X-ray Photoelectron Spectroscopy (XPS) and thermal gravimetric analysis (TGA).

$^{13}C$ and $^{51}V$ Nuclear Magnetic Resonance Studies of Vanadium(V) Complexes of Iminodiacetate Analogues

  • Lee, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.22-26
    • /
    • 1992
  • The solution structures of the vanadium(V) complexes of iminodiacetate analogues, such as iminodiacetate (IDA), methyliminodiacetate (MeIDA), ethyliminodiacetate (EtIDA), benzyliminodiacetate (BzIDA), pyridine-2,6-dicarboxylate (DPA), and 2-hydroxyethyliminodiacetate (HEIDA), have been studied by $^{13}C-$ and $^{51}V$-NMR spectroscopy. Assuming that the complexes have a $cis-VO_2$ core, IDA, MeIDA, EtIDA, and BzIDA act as facial tridentate ligands to form octahedral complexes, whereas DPA coordinates to $VO_2^+$ as a meridional tridentate. And one water molecule fulfills the remaining site to satisfy the coordination number of six. But HEIDA coordinates to $VO_2^+$ through one IDA moiety and one hydroxyl group, acting as a tetradenate.

Crystal Structures and Thermal Properties of Two Binuclear Cd(II) Supramolecular Complexes Based on Quinolinecarboxylate Ligand

  • Hao, Hu-Jun;Yin, Xian-Hong;Lin, Cui-Wu;Wei, Shui-Qiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3255-3260
    • /
    • 2011
  • Two novel binuclear metal-organic coordination complexes $[Cd_2(L)_2(bpy)_2(H_2O)_2]{\cdot}6H_2O$ (1), $[Cd_2(L)_2(phen)_2-(H_2O)_2]{\cdot}2H_2O$ (2) (where L = 2-methylquinoline-3,4-dicarboxylate dianion, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been synthesized under hydrothermal conditions and characterized by single crystal Xray diffraction, spectral method (IR), elemental analysis and thermal gravimetric analysis (TGA). Both 1 and 2 consist of two Cd(II) atoms bridged by two monoatomic bridging carboxylate groups from two L ligands, and the second carboxylate group of each L is monodentately coordinated to Cd(II), creating a sevenmembered chelating ring. The coordination at each metal nucleus is completed by a water molecule and a chelating bidentate molecule. The 3D structures of the complexes are stabilized by ${\pi}-{\pi}$ stacking interactions and hydrogen-bonds.

Hydrothermal Synthesis, Crystal Structure of Four Novel Complexes Based on Thiabendazole Ligand

  • Wei, Shui-Qiang;Lin, Cui-Wu;Yin, Xian-Hong;Huang, Yue-Jiao;Luo, Pei-Qi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2917-2924
    • /
    • 2012
  • Four novel metal-organic complexes $[Cd_2(IP)_2(TBZ)_2(H_2O)_2]{\cdot}(H_2O)$ (1), $[Zn_4(IP)_4(TBZ)_4]{\cdot}2(H_2O)$ (2), $[Zn_2(BTC)(TBZ)_2(CO_2H)]$ (3), [Co(PDC)(TBZ)] (4) (where IP = isophthalate; TBZ = thiabendazole; BTC = 1,3,5-benzenetricarboxylate; PDC = pyridine-3,4-dicarboxylate) have been prepared and characterized by IR spectrum, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffraction. X-ray structure analysis reveals that 1, 2, and 3 are one-dimensional chain polymers, while 4 is a two-dimensional network polymer. The TBZ acts as a typical chelating ligand coordinated to the metal center in all complexes. The 1D chain architecture of 1 is constructed from isophthalates and cadmium atoms. A simultaneous presence of chelating, monodentate and bidentate coordination modes of IP ligands is observed in complex 2. In complex 3, the 16-membered rings are alternately arranged forming an infinite 1D double-chain structure. The 2D skeleton of 4 is formed by cobalt ions as nodes and PDC dianions as spacers, through coordination bonds. The hydrogen bonds and ${\pi}-{\pi}$ stacking play important roles in affecting the final structure where complexes 1 and 3 have 2D supramolecular networks, while complexes 2 and 4 have 3D supramolecular architectures.