• 제목/요약/키워드: Dibutyltin diacetate

검색결과 2건 처리시간 0.015초

PECVD로 제조한 $SnO_2$ 박막의 구조적 특성 (Structural Characteristics of $SnO_2$ Thin Films prepared by PECVD)

  • 이정훈;장건익;손상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.250-251
    • /
    • 2005
  • Tin dioxide (SnO$_2$) thin films have been prepared on Si wafer (100) by Plasma Enhanced Chemical Vapor Deposition (PECVD). SnO$_2$ thin films were prepared from mixtures of dibutyltin diacetate as a precursor, oxygen as an oxidant at 275, 325, 375, 425$^{\circ}C$, respectively. The microstructure of deposited films was characterized by X-ray diffraction and field emission scanning electron microscopy. Structural characteristics of prepared SnO$_2$ thin films were investigated with different substrate temperature. The deposition rate was linearly increased with substrate temperature. Surface morphology and uniformity of prepared thin film was excellent at 375$^{\circ}C$ and grain size was averagely 25nm.

  • PDF

PECVD법에 의해 제조된 SnO2 박막의 공정변수에 따른 미세구조 및 특성 (Microstructure and Characterization Depending on Process Parameter of SnO2 Thin Films Fabricated by PECVD Method)

  • 이정훈;장건익;손상희
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.680-686
    • /
    • 2006
  • Tin oxide$(SnO_2)$ thin films were prepared on glass substrate by Plasma Enhanced Chemical Vapor Deposition (PECVD) method. $SnO_2$ thin films were prepared using gas mixture of dibutyltin diacetate as a precursor and oxygen as an oxidant at 275, 325, 375, $425^{\circ}C$, respectively as a function of deposition temperature. The XRD peaks corresponded to those of polycrystalline $SnO_2$, which is in the tetragonal system with a rutil-type structure. As the deposition temperature increased, the texture plane of $SnO_2$ changed from (200) plane to denser (211) and (110) planes. Lower deposition temperature and shorter deposition time led to decreasing surface roughness and electrical resistivity of the formed thin films at $325\sim425^{\circ}C$. The properties of $SnO_2$ films were critically affected by deposition temperature and time.