• Title/Summary/Keyword: Dibutyl phthalate(DBP)

Search Result 36, Processing Time 0.02 seconds

Effects of acute dibutyl phthalate administration on hepatic lipid peroxidation and gamma-glutamyl transferase activity in mice (마우스에서 dibutyl phthalate 급성 투여가 간 지질과산화와 gamma-glutamyl transferase 활성에 미치는 효과)

  • 최달웅;김영환
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • Dibutyl phthalate (DBP) is used extensively in the plastic industry and has been known as an endocrine disruptor. Present study was undertaken to examine whether DBP can induce oxidative stress in mice. In this study, oxidative stress was measured in terms of the modification of lipid peroxidation and gamma-glutamyl transferase (GGT) activity. The serum toxicity index, level of lipid peroxidation and triglyceride (TG), and activity of GGT were measured in male ICR mice after a single administration of DBP (5 g/kg, po). DBP did not alter serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, glucose and cholesterol level. However, the treatment with DBP was found to significantly increase the level of lipid peroxidation in liver and lung. The TG content and activity of GGT in the liver of DBP-exposed animals was also increased. These results indicate that DBP can induce mild oxidative stress in mice. The GGT activity is considered to be increased as one of the adaptive defense mechanisms to oxidative stress induced by DBP.

Toxicogenomic Gene Profiles using KISTCHIP-400 in MCF-7 cells after Exposure to Di(2-ethylhexyl) Phthalate (DEHP) and Dibutyl Phthalate (DBP)

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Kim, Ick-Young;Ryu, Jae-Chun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.128-128
    • /
    • 2003
  • There are many synthetic chemicals, such as di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), used in chemical reaction processes in industry. The establishment of toxicity and detection of synthetic chemicals that may pose a genetic hazard in our enviornment is subjects of great concern at present.(omitted)

  • PDF

Gene Expression Profiles of Dibutyl Phthalate and 17$\beta$-Estradiol using cDNA microarray in MCF 7 Human Breast Cancer Cell Line

  • Ryu, Jae-Chun;Kim, Hyung-Tae;Kim, Youn-Jung
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Phthalates, suspected endocrine disruptor, are plasticizer and solvent used in industry, and some phthalates are known as potential carcinogen. Most common human exposure to this compounds may occur with contaminated food. It may migrate into food from plastic wrap or may enter food from general environmental contamination, and it has become widespread environmental pollutants, thus leading to a variety of phthalates that possibly threaten the public health. Dibutyl phthalate (DBP) may playa part of cell proliferator, which mediates changes in gene expression and the metabolism of xenobiotics. An understanding of the role of DBP in modulating gene regulation should provide insight regarding mechanisms of DBP induced xenoestrogenic impact. To elucidate the type of genes that are associated with estrogenic activity induced by DBP at the dose (10$^{-8}$ M) appeared proliferating effects, the pattern of gene expression in MCF7 cells was compared between 17$\beta$-estradiol and DBP exposure in the cDNA microarray. From the results, it showed some differences of gene expression patterns between MCF7 cells treated with 17$\beta$-estradiol and DBP, and also DBP shows estrogenic potential with changes in estrogen-related gene expression levels.

  • PDF

Simultaneous Determination of Phthalates(DMP, DEP, DBP, BBP, DEHP, DnOP) by Solid Phase Microextraction-GC/MS (Solid Phase Microextraction-GC/MS에 의한 플라스틱가소제(DMP, DEP, DBP, BBP, DEHP, DnOP)의 동시분석)

  • Lee, Jae-Hee;Bae, Jun-Hyun;Kang, Jun-Gill;Kim, Youn-Doo
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.17-27
    • /
    • 2004
  • A procedure based on solid phase microextraction extraction(SPME)-GC/MS has been developed for the simultaneous analysis of plasticizers. The plasticizers investigated in this study are dimethyl phthalate(DMP), diethyl phthalate(DEP), dibutyl phthalate(DBP), benzylbutyl phthalate(BBP), diethylhexyl phthalate (DEHP), di-n-octyl phthalate(DnOP). The limit of detection(LOD) was 0.163~0.299 with relative standard deciation(RSD) of 5.85~15.80% for these compounds. At water reserviors of Han, Geum, Nakdong and Sumjin rivers, only DBPand DEHP were detected at trace level, 0.192~1.270 ng/ml for DBP and 0.077~1.102 ng/ml for DEHP depending on the river.

Determination of Phthalate Metabolites in Human Serum and Urine as Biomarkers for Phthalate Exposure Using Column-Switching LC-MS/MS

  • Jeong, Jee-Yeon;Lee, Ji-Hyun;Kim, Eun-Young;Kim, Pan-Gyi;Kho, Young-Lim
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • Objectives: Although phthalates like dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) are commonly used as plasticizers and their metabolites are especially suspected of reproductive toxicity, little is known about occupational exposure to those phthalates. The aim of this study was to assess the utility of measuring the metabolite concentrations of DBP and DEHP in serum and urine samples as an indicator of occupational exposure to those phthalates. Methods: Phthalate metabolites were analyzed by using column-switching high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results: We detected phthalate metabolites in serum and urine matrices at approximately 10-fold lower than the limit of detection of those metabolites in the same matrix by LC-MS/MS without column switching, which was sufficient to evaluate concentrations of phthalate metabolites for industrial workers and the general population. Conclusion: The accuracy and precision of the analytical method indicate that urinary metabolite determination can be a more acceptable biomarker for studying phthalate exposure and adverse health outcomes.

Altered Gene Profiles using KISTCHIP-400 in MCF-7 cells after Exposure to Di(2-ethylhexyl) Phthalate (DEHP) and Dibutyl Phthalate (DBP)

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.174-174
    • /
    • 2003
  • There are many synthetic chemicals, such as di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), used in chemical reaction processes in industry. The establishment of toxicity and detection of synthetic chemicals that may pose a genetic hazard in our enviornment is subjects of great concern at present DEHP, a ubiquitous phthalate plasticizer, induces a wide range of developmental and reproductive toxicities in mammals. DEHP belongs to the large diverse class of peroxisome proliferator compounds, which include herbicides, hypolipidemic drugs. DBP is a plasticizer used to products containing nitrocellulose, polyvinyl acetate, and polyvinyl chloride such as food wraps and blood bags. DBP is also used in cosmetics as a solvent and fixative for perfumes, a suspension agent for solids, an antifoamer, a skin emollient, and hair spray The present study was performed to examine patterns of gene expression in MCF-7 cells following DEHP and DBP exposure. Changes in gene expression were determined by microarray analysis using KISTCHIP-400 including 401 endocrine related genes based on public database and research papers. Of the genes analysis, we determined that genes detected by array showed a 2-fold or greater change in their expression level(increase or decrease). The results of this study demonstrate that a number of genes were differentially expressed in MCF-7 cells but these changes were not significant. Therefore, we keep going this study using microarray analysis and future studies will examine changes of gene expression on time-course and does treatment in variable cell lines.

  • PDF

Dermal and Ocular Irritation Studies of Some Phthalates in Rabbits (Phthalate의 피부자극시험 및 안점막자극시험에 관한 연구)

  • 이종권;김주환;이은희;김용규;홍진태;박기숙;안광수;정수연;이선희
    • Toxicological Research
    • /
    • v.17 no.2
    • /
    • pp.91-96
    • /
    • 2001
  • Phthalates are widely used as plasticizers to impart softness and flexibility to normally rigid polyvinylchloride products. However, there are not much studies jar dermal and ocular irritation toxicity of phthalates. So we investigated the skin or eye irritation effect of some phthalates which was not reported. The primary skin irritation of diethyl phthalate (DEP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), dipropyl phthalate (DPP) and dipropyl phthalate (DPrP) was studied. The ocular irritation of dibutyl phthalate(DBP), DIDP, DINP, DPP and DPrP was also studied. DEP, DIDP, DINP, DPP, and DPrP were found to be non-irritating to the skin of the test animals. DBP, DIDP, DINP and DPP were found to be non-irritating to the eye of the rabbits. DPrP caused the slight irritations to the eye in 1 or 2 days after treatment but irritation of the animals was soon recovered.

  • PDF

Accurate Analysis of Trace Phthalates and Method Validation in Cosmetics using Gas Chromatography with Mass Spectrometric Detection (화장품에 함유된 미량의 프탈레이트 함량을 정확히 분석하기 위한 가스크로마토그래피-질량분석 시험법 및 그 시험법의 유효성)

  • Kim, Min-Kee;Jeong, Hye-Jin;Cho, Jun-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.33-41
    • /
    • 2012
  • An effective, environmentally friendly analytic methods using gas chromatography with mass spectrometric detector (GC-MSD) have been developed for the quantitative analysis of trace phthalate levels in cosmetics such as nail lacquer and hair spray. Since such cosmetics are largely comprised of organic solvents, conventional clean-up methods that have been widely used for phthalate analyses are in adequate. In addition, analysis of trace phthalate levels is notorious for its sensitivity to contamination, which causes high analytical values. A direct sample dilution method using an organic solvent was adopted to the sample preparation process to determine the exact amounts of phthalates and simultaneously avoid the high risk of secondary contamination. The method has many advantages including high accuracy, sensitivity, and simplicity in sample preparation. Dibutyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) were selected for analysis because they have been frequently detected in cosmetics and consistently reported as endocrine disruptors in humans and animals. Internal standard method using two deuterium substitutes (DBP-$d_4$, DEHP-$d_4$) as the internal standard was also used. The results of 'Method validation' showed the capabilities of this method for the routine analysis of phthalates at the ppm level. The recovery ranges were between 95 % and 106.1 %, and relative standards deviations (RSD) were less than 3.9 % in fortified nail lacquer and hair spray samples at the concentration of $25{\mu}g/g$.

Effect of Coagulation Heat Capacity on the PVDF Membrane via TIPS Method (열유도상분리법을 이용한 응고조의 열용량에 따른 PVDF 분리막의 구조 분석)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • In this study, we used TIPS (thermally induced phase separation) for the application of water treatment membrane, and observed the change in morphology of separation membrane due to the change of solidification temperature and heat capacity. For manufactured membrane, PVDF and silica with excellent mechanical properties and chemical resistance were used, and DOP (dioctyl phthalate), DBP (dibutyl phthalate) were used as the diluent. Using the SEM (scanning electron microscope), the morphology of each different coagulation solutions of heat capacity change was observed. As the heat capacity increased, the crystallization rate of PVDF was decreased and showed large pore. In contrast, It also confirmed that the smaller heat capacity, the faster the crystallization rate and make smaller pores.