• Title/Summary/Keyword: Diamond Mechanical Polishing

Search Result 52, Processing Time 0.025 seconds

Fabrication of R-plane Sapphire wafer for Nonpolar a-plane GaN (비극성 a-GaN용 R-면 사파이어 기판의 제조)

  • Kang, Jin-Ki;Kim, Jung-Hwan;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • We have studied on the slicing and polishing processes of R-plane sapphire wafers for the substrates of UHB nonpolar a-plane GaN LED. The fabrication conditions of the R-plane and c-plane wafers were influenced by the large anisotropic properties (mechanical properties) of the sapphire. The slicing process was more affected by the anisotropic properties of R-plane than the polishing process. When the slicing direction was $45^{\circ}$ to the a-flat, the slicing time was shorter and the quality of as-slicing wafers was better than the slicing direction of normal to the a-flat. The MRR(Material removal rate) of mechanical polishing processes such as lapping and DMP(Diamond mechanical polishing) did not show significant differences between the R-plane and c-plane. The MRR of the c-plane was about two times higher than that of R-planes at the CMP(Chemical mechanical polishing) process due to the formation of hydrolysis reaction layers on the surface of the c-plane.

Design Variables of Chemical-Mechanical Polishing Conditioning System to Improve Pad Wear Uniformity (패드 마모 균일성 향상을 위한 CMP 컨디셔닝 시스템 설계 변수 연구)

  • Park, Byeonghun;Park, Boumyoung;Jeon, Unchan;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Chemical-mechanical polishing (CMP) process is a semiconductor process that planarizes a wafer surface using mechanical friction between a polishing pad and a substrate surface during a specific chemical reaction. During the CMP process, polishing pad conditioning is applied to prevent the rapid degradation of the polishing quality caused by polishing pad glazing through repeated material removal processes. However, during the conditioning process, uneven wear on the polishing pad is inevitable because the disk on which diamond particles are electrodeposited is used. Therefore, the abrasion of the polishing pad should be considered not only for the variables during the conditioning process but also when designing the CMP conditioning system. In this study, three design variables of the conditioning system were analyzed, and the effect on the pad wear profile during conditioning was investigated. The three design variables considered in this study were the length of the conditioner arm, diameter of the conditioner disk, and distance between centers. The Taguchi method was used for the experimental design. The effect of the three design variables on pad wear and uniformity was assessed, and new variables used in conditioning system design were proposed.

The Pad Recovery as a function of Diamond Shape on Diamond Disk for Metal CMP (Metal CMP 용 컨디셔너 디스크 표면에 존재하는 다이아몬드의 형상이 미치는 패드 회복력 변화)

  • Kim, Kyu-Chae;Kang, Young-Jae;Yu, Young-Sam;Park, Jin-Goo;Won, Young-Man;Oh, Kwang-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.47-51
    • /
    • 2006
  • Recently, CMP (Chemical Mechanical Polishing) is one of very important processing in semiconductor technology because of large integration and application of design role. CMP is a planarization process of wafer surface using the chemical and mechanical reactions. One of the most important components of the CMP system is the polishing pad. During the CMP process, the pad itself becomes smoother and glazing. Therefore it is necessary to have a pad conditioning process to refresh the pad surface, to remove slurry debris and to supply the fresh slurry on the surface. A conditioning disk is used during the pad conditioning. There are diamonds on the surface of diamond disk to remove slurry debris and to polish pad surface slightly, so density, shape and size of diamond are very important factors. In this study, we characterized diamond disk with 9 kinds of sample.

  • PDF

Tribological Characteristics of Conditioning Methods on Polishing Pad (컨디셔닝 방식에 따른 패드의 트라이볼로지적 특성)

  • Lee, Hyun-Seop;Park, Boum-Young;Seo, Heon-Deok;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.358-359
    • /
    • 2005
  • Chemical mechanical polishing(CMP) process depends on a variety of variables. Especially, surface roughness of pad plays a key role in material removal in CMP in terms of transportation ability of pores and real contact area. The surface roughness is deteriorated with polishing time by applied pressure and relative velocity. In this reason, diamond conditioner has been used to maintain the roughness on the pad. The authors try to investigate the correlation between pad roughness and frictional behavior by comparing ex-situ conditioning with in-situ conditioning.

  • PDF

Interrelation of the Diamond Disk and pad PCR in the CMP Process (CMP 공정에서 Diamond Disk와 Pad PCR 상관관계 연구)

  • Yun, Young-Eun;No, Yong-Han;Yoon, Bo-Earn;Bae, Sung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.359-361
    • /
    • 2006
  • As circuits become increasingly complex and devices sizes shrinks, the demands placed on global planarization of higher level. Chemical Mechanical Polishing (CMP) is an indispensable manufacturing process used to achieve global planarity. In the CMP process, Diamond Disk (DD) plays an important role in the maintenance of removal rate. According to studies, the cause of removal rate decrease in the early or end stage of diamond disk lifetime comes from pad surface change. We also presented pad cutting rate (PCR) as a useful cutting ability index of DD and studied PCR trend about variable parameters that including size, hardness, shape of DD and RPM, pressure of conditioner It has been shown that PCR control ability of pressure and shape is superior to RPM and size. High pressure leads to a decrease of cell open ratio of pad surface because polyurethane of pad is destroyed by pressure. So low pressure high RPM condition is a proper removal rate sustain. By examining correlations between RPM and pressure of conditioner, it has been shown that PCR safe zoneto satisfy proper removal rate has the range 0.06mm/hr to 0.12mm/hr.

  • PDF

Analytic Study on Pulsed-Laser Polishing on Surface of NAK80 Die Steel (펄스레이저에 의한 NAK80 금형강 표면연마의 해석적 연구)

  • Kim, Kwan-Woo;Kim, Seung-Hwan;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.136-141
    • /
    • 2015
  • Laser surface polishing is a polishing method for improving surface roughness using an integrated laser beam. Using a laser for surface polishing can improve the surface condition without physical contact or chemical action. Laser polishing has mainly been used to polish the surface of diamond or optical articles, such as lenses and glasses. Recently, diverse studies on laser polishing for metals have been conducted. The analytic study of laser surface polishing has been conducted with experimental trials for comparison, so that the proper conditions for laser polishing can be recommended. In this study, laser surface polishing was simulated in order to predict the heat-affected zone on the die steel depending on the power of the pulsed laser. The simulated results were verified by comparing them to those of the experimental trials. Through this study, therefore, the application of FEM to the selection of appropriate laser conditions could be possible.

Effect of Diamond Abrasive Shape of CMP Conditioner on Polishing Pad Surface Control (CMP 컨디셔너의 다이아몬드 입자 모양이 연마 패드 표면 형상 제어에 미치는 영향)

  • Lee, Donghwan;Lee, Kihun;Jeong, Seonho;Kim, Hyungjae;Cho, Hanchul;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.330-336
    • /
    • 2019
  • Conditioning is a process involving pad surface scraping by a moving metallic disk that is electrodeposited with diamond abrasives. It is an indispensable process in chemical-mechanical planarization, which regulates the pad roughness by removing the surface residues. Additionally, conditioning maintains the material removal rates and increases the pad lifetime. As the conditioning continues, the pad profile becomes unevenly to be deformed, which causes poor polishing quality. Simulation calculates the density at which the diamond abrasives on the conditioner scratch the unit area on the pad. It can predict the profile deformation through the control of conditioner dwell time. Previously, this effect of the diamond shape on conditioning has been investigated with regard to microscopic areas, such as surface roughness, rather than global pad-profile deformation. In this study, the effect of diamond shape on the pad profile is evaluated by comparing the simulated and experimental conditioning using two conditioners: a) random-shaped abrasive conditioner (RSC) and b) uniform-shaped abrasive conditioner (USC). Consequently, it is confirmed that the USC is incapable of controlling the pad profile, which is consistent with the simulation results.

Rotational Stability and Lubrication State Evaluation of the Polishing Head for High Speed Polishing (폴리싱 고속화를 위한 연마헤드의 회전 안정성과 윤활 상태 평가)

  • Lee, Hocheol;Choi, Minseok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.301-306
    • /
    • 2016
  • High speed polishing can kinematically increase the polishing removal rate by using the conventional Preston equation, especially for hard substrates such as sapphire or diamond. However, high speed effects should be clarified beforehand considering the lubrication state and process parameter variations. In this paper, we developed a polishing experimental method and apparatus to determine the lubrication state by measuring the real time friction coefficient using two load cells. Through experiments, we obtained a boundary lubrication state above 0.35 of the friction coefficient by using low table speed and high polishing load, indicating a synchronized stable behavior in polishing head rotation. However, larger Stribeck indexes by a high speed above 200 rpm can generate a hydrodynamic lubrication state below 0.25 of the low friction coefficient. This causes the polishing head rotation to stop. A forced and synchronized head rotation is required for high speed polishing.

A Study on the Ultrasonic Conditioning for Interlayer Dielectic CMP (층간절연막 CMP의 초음파 컨디셔닝 특성에 관한 연구)

  • 서헌덕;정해도;김형재;김호윤;이재석;황징연;안대균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.854-857
    • /
    • 2000
  • Chemical Mechanical Polishing(CMP) has been accepted as one of the essential processes for VLSI fabrication. However, as the polishing process continues, pad pores get to be glazed by polishing residues, which hinder the supply of new slurry. This defect makes removal rate decrease with a number of polished wafer and the desired within-chip planarity, within wafer and wafer-to-wafer nonuniformity are unable to be achieved. So, pad conditioning is essential to overcome this defect. The eletroplated diamond grit disk is used as the conventional conditioner, And alumina long fiber, the .jet power of high pressure deionized water and vacuum compression are under investigation. But, these methods have the defects like scratches on wafer surface by out of diamond grits, subsidences of pad pores by over-conditioning, and the limits of conditioning effect. To improve these conditioning methods. this paper presents the Characteristics of Ultrasonic conditioning aided by cavitation.

  • PDF