• Title/Summary/Keyword: Diamond film

Search Result 447, Processing Time 0.03 seconds

Thin film growth by charged clusters

  • Hwang, N.M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.33-33
    • /
    • 1998
  • Invisible charged clusters are suggested to form in the gas phase and to become the growth unit in the thin film process. Similar suggestion had been made by Glasner el al. in the crystal growth of KBr and KCL in the solution where the lead ions were added. The charged cluster model, which was suggested in the diamond CVD process by our group, will be extended to the other thin film processes. It will be shown based on both the theoretical analysis and the experimental evidences that the charged clusters are formed in the gas phase and become the growth unit of the crystal in the thin film process.

  • PDF

Characteristics of cell culture on the carbon based materials (카본재질의 세포 배양 특성)

  • Nam, Hyo-geun;Oh, Hong-gi;Park, Hye-Bin;Kim, Chang-man;Jhee, Kwang-hwan;Song, Kwang-soup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1000-1002
    • /
    • 2012
  • The material with superior biocompatibility and physical-chemical stability is required to fabricate high sensitive biosensors. Many kinds of biomaterials have been evaluated to apply for bioindustry. Recently, carbon based diamond and graphene thin films have been focal pointed as bio applications and their possibility is partially evaluated. Diamond thin film has many advantages for electrochemical and biological applications, such as wide potential window (3.0~3.5V), low background current and chemical-physical stability. And graphene film has many advantages as biomaterial, chemical-physical stability and conductivity. In this work, we have cultured human nerve cell (SH-SY5Y) on the nanocrystalline diamond, mirocrystalline diamond, graphene film and cell culture dish. We use MTT assay to evaluate the characteristics of cell culture on the substrates. As a result, nerve cell is well cultured on the carbon based diamond and graphene films as similar as cell culture dish. We expect that carbon materials have been applied for bioindustry such as biosensors.

  • PDF

Thermal Stability of Silicon-containing Diamond-like Carbon Film (실리콘 함유 DLC 박막의 내열특성)

  • Kim, Sang-Gweon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Diamond-like carbon (DLC) coating was studied to be a good tribological problem-solver due to its low friction characteristics and high hardness. However, generally hydrogenated DLC film has shown a weak thermal stability above $300^{\circ}C$. However, the silicon doping DLC process by DC pulse plasma enhanced chemical vapor deposition (PECVD) for the new DLC coating which has a good characterization with thermal stability at high temperature itself has been observed. And we were discussed a process for optimizing silicon content to promote a good thermal stability using various tetramethylsilane (TMS) and methane gas at high-temperature. The chemical compositions of silicon-containing DLC film was analyzed using X-ray photoelectron spectroscopy (XPS) before and after heat treatment. Raman spectrum analysis showed the changed structure on the surface after the high-temperature exposure testing. In particular, the hardness of silicon-containing DLC film showed different values before and after the annealing treatment.

Frriction and Wear of Siamond-Like Carbon Films Produced by Plasma-Assisted CVD Technique

  • AkihiroTanaka;KazunoriUmeda;KazuyukiMizuhara;Ko, Myoung-Wan;Kim, Seong-Young;Shin, Seung-Yong;Lee, Sang-Hyun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.182-186
    • /
    • 1997
  • Diamond-like carbon(DLC) films were deposited on silicon substreates by using an RF plasmaassisted CVD apparatus; the effects of deposition conditions such as CH4 gas pressure and substrate bias voltage on DLC film friction and wear were examined in both friction and scratch tests. In friction tests critical loads at which the friction coefficient increases abruptly depend on substrate bias voltages: critical loads deposited at a bias voltage of -100 V exceed those deposited at other bias voltages. Critical loads are correlated with DLC film hydrogen content. Critical DLC film loads in scratch tests depended considerably less than in friction tests. The friction coefficient of DLC films depends on neither substrate bias voltage nor CH4 gas pressure.

  • PDF

Characteristic of Nitrogen doped Diamond-Like Carbon film on the Silicon substrates (실리콘 기판에 증착된 질소도핑 DLC 박막의 특성)

  • Nguyen, Van Cao;Kim, Tae Hyeon;Kim, Hye Sung;Shin, Dong Chul;Kim, Tae Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.34-40
    • /
    • 2013
  • Various depositional conditions, such as substrate, pressure, deposition time, temperature of substrate, power and gas composition, have mainly been studied to attain DLC films using RF sputtering system up to the current. In this study, the $N_2/Ar/CH_4$ gas mixture factored on characteristics of DLC deposited film such as structure, hardness, electrical property were investigated. The concentration of the $N_2$ gas in the sputtering gas may be a significant effect on the growth rate of the doped films, because nitrogen ions react not only with the carbon atoms on the target but also with $C_xH_y$ ions in the plasma on the substrate surface. It was seen from this experimental that the resistance of deposited film is decreased, and the relative intensity ratio of D to G peak is increased as nitrogen content of film deposition is increased.

A variation of elastic modulus of very thin diamond-like carbon films with deposition condition (증착조건에 따른 극미세 다이아몬드상 카본 박막의 탄성률 변화거동)

  • 정진원;이광렬;은광용;고대홍
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.387-395
    • /
    • 2001
  • The elastic modulus and the structural evolution were examined with the film thickness in polymeric, hard, graphitic diamond-like carbon (DLC) films. The DLC films used in the present study were prepared by radio frequency plasma assisted chemical vapor deposition (r.f.-PACVD) from $C_6H_6\;and\;CH_4$ gas. Elastic modulus of very thin DLC film was measured by free overhang method. This method has an advantage over the other methods. Because the substrate was removed by etching technique, the measured value is not affected by the mechanical property of the substrate. The structural evolution was investigated by the G-peak position of the Raman spectrum. The polymeric and graphitic films exhibited the decreased elastic modulus with decreasing film thickness. In polymeric films, the reason was that more polymeric film had been deposited in the initial stage of the film growth and in graphitic film more graphic films which had been deposited in the initial stage decreased the elastic modulus. The G-peak position of the Raman spectrum confirmed this result. On the other hand, the hard film showed the constant elastic modulus regardless to the film thickness. The structural change was not observed in this range of the film thickness.

  • PDF

Diamond-like Carbon Protective Anti-reflection Coating for Solar Cell Application (태양전지 응용을 위한 DLC(Diamond-like Carbon) 반사방지막의 특성 분석)

  • Choi, Won-Seok;Jeon, Young-Sook;Kim, Kyung-Hae;Yi, Jun-Sin;Heo, Jin-Hee;Chung, Il-Sub;Hong, Byung-You
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1737-1739
    • /
    • 2004
  • Diamond-like carbon (DLC) films were prepared with RF-PECVD (Plasma Enhanced Chemical Vapor Deposition) method on coming glass and silicon substrates using methane ($CH_4$) and hydrogen ($H_2$) gases. We examined the effects of $CH_4$ to $H_2$ ratios on tribological and optical properties of the DLC films. The structure and surface morphology of the films were examined using Raman spectroscopy and atomic force microscopy (AFM). The hardness of the DLC film was measured with nano-indentor. The optical properties of DLC thin film were investigated by UV/VIS spectrometer and ellipsometry. And also, solar cells were fabricated using DLC as antireflection coating before and after coating DLC on silicon substrate and compared the efficiency.

  • PDF

A Study on Detailed Structural Variation of Diamond-like Carbon Thin Film by a Novel Raman Mapping Method (라만 맵핑 방식을 사용한 다이아몬드상 카본박막의 미세구조변화에 관한 연구)

  • Choi, Won-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.618-623
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. The wear track on the DLC films was examined after the ball-on disk (BOD) measurement with a Raman mapping method. The BOD measurement of the DLC films was performed for 1 to 3 hours with a 1-hour step time. The sliding traces on the hydrogenated DLC film after the BOD measurement were also observed using an optical microscope. The surface roughness and cross-sectional images of the wear track were obtained using an atomic force microscope (AFM). The novel Raman mapping method effectively shows the graphitization of DLC films of $300{\mu}m\times300{\mu}m$ area according to the sliding time by G-peak positions (intensities) and $I_D/I_G$ ratios.

The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD (RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성)

  • Lee Young-Ze;Cho Yong-Kyung;Shin Yun-Ha
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

Effect of Substrate Temperature on the Morphology of Diamond Films by MPCVD (기판 온도가 다이아몬드 박막의 Morphology에 미치는 영향)

  • Park, Yeong-Su;Kim, Sang-Hun;Kim, Dong-Ho;Lee, Jo-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.385-392
    • /
    • 1994
  • The morphology variat~on of diamond thin films, grown by microwave plasma chem~cal vapor deposition, was investigated. With increasing substrate temperature from $550^{\circ}C$ to $750^{\circ}C$, the film morphology was changed from {111} to {100}, and then to cauliflower. The nondiamond components in the film increased with increasing temperature. Micro Raman spectrum suggested that the nondiamond components might exist along the boundaries of d~amond particles. The texture of diamond films, analyzed by X-ray diffraction, was varied from random orientation to <100> , and finally to <110> with increasing substrate temperature.

  • PDF