• Title/Summary/Keyword: Diagonal Model

Search Result 253, Processing Time 0.022 seconds

A new four-layer channel router using the diagonal routing (대각선배선을 사용한 4층 채널배선에 관한 연구)

  • 이병호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.9-17
    • /
    • 1997
  • This paper proposes a routing model based on the HVHD for four-layer routing problems. Differing from the HVHV and HVHH models, the proposed HVHD model permits diagonal routing on the fourth laye rwith a grid of 45.deg., 90.deg. and 135.deg. directions. The developed algorithm which uses a channel-graph including weights routes a layer using diagonal model and the othe rthree layers using HVH model. Applications to several benchmark examples verify that approximately 10~25 percent reduction of channel density can be achieved compared to the conventional four-layer channel routing algorithms.

  • PDF

Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs

  • Keskin, Riza S.O.;Arslan, Guray
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.697-715
    • /
    • 2013
  • Numerous studies have been conducted to understand the shear behavior of reinforced concrete (RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams are based on experimental data. A powerful computational tool for analyzing experimental data is an artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it does not require any functional form and it can be easily updated whenever additional data is available. An ANN model was developed for predicting the diagonal cracking strength of RC slender beams without stirrups. It is shown that the performance of the ANN model over the experimental data considered in this study is better than the performances of six design code equations and twelve equations proposed by various researchers. In addition, a parametric study was conducted to study the effects of various parameters on the diagonal cracking strength of RC slender beams without stirrups upon verifying the model.

Establishment of the Heart Failure Model by Coronary Artery Ligation in Sheep (양에서 관상동맥 결찰에 의한 심부전 모델의 확립)

  • 나찬영;홍장수;박정준;김원곤;강문철;서정욱
    • Journal of Chest Surgery
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • Background: Despite the relatively high mortality rates in the chronic heart failure model induced by coronary artery ligation are relatively high, this model has been a subject of continuos research because of its clinical correlation. Chronic heart failure model of large-sized animals is very useful to analyse mechanical or biological effects on circulatory system which is difficult in small-sized animals. The purpose of this study is to establish the heart failure model by coronary artery ligation in sheep. Material and Method: Among 9 Corridale sheep, the homonymous artery and the diagonal branch were ligated simultaneously in 2 sheep and remaining 7 sheep were assigned to successive ligation of both arteries at an interval of 1 hour. Both coronary arteries were ligated from the point 40% proximal to the apex of the heart. Hemodynamic and echocardiographic parameters were analyzed before the ligation of the coronary artery, after the ligation of the homonymous artery, and after additional ligation of the diagonal branch. The experimental animals were sacrificed after 2 or 3 months of growth and histopathologic studies were performed Result: Immediate postoperative death occurred in the 2 sheep that had received simultaneous ligation of the homonymous artery and diagonal branch. On the other hand, all the 7 sheep that were lifated in succession were survived up to 3 months. Arterial pressure was sifnificantly decreased immediately after ligation of the homonymous artery(p<0.05), and the cardiac output was decreased and pulmonary capillary wedge pressure was increased after further ligation of the diagonal branch(p<0.05). Central venous pressure, pulmonary artery pressure, pulmonary capillary wedge pressure, left ventricular end-diastolic dimension and end-systolic dimension were markedly increased 3 months after ligation of coronary arteries. Anteroseptal akinesia or dyskinesia was developed after the ligation of coronary arteries. Histopathologic study revealed we]1-demarcated ischemic area of fibrosis. Conclusion: Using methods of successive ligation of the homonymous artery and diagonal branch, chronic heart failure model could be reliably established in sheep.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.

CenterNet Based on Diagonal Half-length and Center Angle Regression for Object Detection

  • Yuantian, Xia;XuPeng Kou;Weie Jia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1841-1857
    • /
    • 2023
  • CenterNet, a novel object detection algorithm without anchor based on key points, regards the object as a single center point for prediction and directly regresses the object's height and width. However, because the objects have different sizes, directly regressing their height and width will make the model difficult to converge and lose the intrinsic relationship between object's width and height, thereby reducing the stability of the model and the consistency of prediction accuracy. For this problem, we proposed an algorithm based on the regression of the diagonal half-length and the center angle, which significantly compresses the solution space of the regression components and enhances the intrinsic relationship between the decoded components. First, encode the object's width and height into the diagonal half-length and the center angle, where the center angle is the angle between the diagonal and the vertical centreline. Secondly, the predicted diagonal half-length and center angle are decoded into two length components. Finally, the position of the object bounding box can be accurately obtained by combining the corresponding center point coordinates. Experiments show that, when using CenterNet as the improved baseline and resnet50 as the Backbone, the improved model achieved 81.6% and 79.7% mAP on the VOC 2007 and 2012 test sets, respectively. When using Hourglass-104 as the Backbone, the improved model achieved 43.3% mAP on the COCO 2017 test sets. Compared with CenterNet, the improved model has a faster convergence rate and significantly improved the stability and prediction accuracy.

Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models

  • Bouarroudj, Mohammed A.;Boudaoud, Zeineddine
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • This study highlights the accuracy of several single strut models to predict the global response of infilled reinforced concrete (R/C) frames. To this aim, six experimental tests are selected to calibrate the numerical modeling. The width of the diagonal strut is calculated using several macro models from the literature. The mechanical properties of the diagonal strut are determined by using two methods: (a) by subtracting the bare frame response from that of the infilled frame, and (b) by calculating the axial strength in the diagonal direction. A combination between the different width and the axial force models is carried out to study the effects of each parameter on global response. Non-linear pushover analyses are conducted using SAP2000. The results indicate the accuracy of the macro-modeling approach to predict the behavior of the infilled frames.

Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

  • Yang, Yuqing;Mu, Zaigen;Zhu, Boli
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross brace-strip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and fine-scale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.

Internal Flow Analyses of Diagonal Type Blowers Using a Quasi-3-Dimensional Method Considering Spanwise Mixing and Tip Clearance Effect Due to Secondary Flows (이차흐름에 의한 스팬방향의 믹싱효과와 선단틈새흐름을 고려한 준 삼차원 사류송풍기 내부흐름 해석)

  • Kim, Chan-Kyu;Jun, Yong-Du;Kim, Tae-Whan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.137-146
    • /
    • 2002
  • This paper presents a quasi-3-dimensional calculation method considering secondary flows in the impellers of diagonal flow blowers. A Quantitative estimation of the secondary flow effects is made by using secondary flow theories. In order to verify the validity of the adopted models, that is, span-wise mixing model and the tip clearance model, numerical simulations are performed for two different types of impellers of diagonal flow blowers which are designed differently. Numerical experiments are conducted for each of a constant tangential velocity type impeller, and a free vortex type impeller, both at two different flow coefficients. According to the simulation results, it was found that the present model considering span-wise mixing and tip clearance effect shows better agreements with the experimental data than those without these models in terms of the flow velocity and the angle distribution.

  • PDF

New strut-and-tie-models for shear strength prediction and design of RC deep beams

  • Chetchotisak, Panatchai;Teerawong, Jaruek;Yindeesuk, Sukit;Song, Junho
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.19-40
    • /
    • 2014
  • Reinforced concrete deep beams are structural beams with low shear span-to-depth ratio, and hence in which the strain distribution is significantly nonlinear and the conventional beam theory is not applicable. A strut-and-tie model is considered one of the most rational and simplest methods available for shear strength prediction and design of deep beams. The strut-and-tie model approach describes the shear failure of a deep beam using diagonal strut and truss mechanism: The diagonal strut mechanism represents compression stress fields that develop in the concrete web between diagonal cracks of the concrete while the truss mechanism accounts for the contributions of the horizontal and vertical web reinforcements. Based on a database of 406 experimental observations, this paper proposes a new strut-and-tie-model for accurate prediction of shear strength of reinforced concrete deep beams, and further improves the model by correcting the bias and quantifying the scatter using a Bayesian parameter estimation method. Seven existing deterministic models from design codes and the literature are compared with the proposed method. Finally, a limit-state design formula and the corresponding reduction factor are developed for the proposed strut-andtie model.