• Title/Summary/Keyword: Diagnostic imaging system

Search Result 346, Processing Time 0.03 seconds

Clinical Situations in which Musculoskeletal Ultrasound is Helpful (근골격계 초음파검사가 도움이 되는 진료 상황)

  • Cho, Kil-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.2
    • /
    • pp.170-186
    • /
    • 2001
  • Musculoskeletal ultrasound (MSUS) has newly evolved by the mechanical improvement of the machine over past several years, becoming a part of imaging techniques for the evaluation of variable diseases in the musculoskeletal system. MSUS has proven diagnostic superiority in pathologies including rotator cuff disease of the shoulder, lateral epicondylitis of the elbow, diseases of the peripheral nerve, detection of intra-articular loose bodies and soft tissue foreign bodies, and in evaluating small superficial soft tissue tumors such as ganglion, epidermoid cyst, and glomus tumor. Besides, MSUS is very useful for obtaining tissue or fluid via percutaneous fine needle aspiration and/or biopsy for the histopathologic diagnosis. Combining MSUS with MR would play a great role in the field of the diagnostic imaging of the musculoskeletal system. The MSUS examiner should have the knowledge of cross-sectional anatomy, and of the mechanical and physical properties of ultrasound in order to interpret the ultrasound findings accurately and properly, and to avoid diagnostic errors due to variable artifacts subsequently. The goal of this article is to introduce the capabilities of MSUS in certain kinds of clinical situation and to familiarize the reader with MSUS. For the purpose, author intends to describe this article according not to the disease-, or organ-based, but to the clinical problem-based format.

  • PDF

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Diagonstic Evaluation of X-Ray Imaging using Fuzzy Logic Systems (Fuzzy Logic Systems을 이용한 X-선 영상의 진단평가)

  • Lee, Yong-Gu
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • In this paper, ROC curves were designed by using Fuzzy Logic Systems. ROC curve is used for diagnostic evaluation and the person evaluating ROC curve is chosen as a first-level diagnostician. For rating diagnostic capability on ROC curve through learning, the chest X-ray image is used. The images used for making a diagnosis are X-ray film being both noise and signal. The result over diagnostic capability difference between the male and the female represented a man had better than a woman but that difference can be ignored.

T2 Relaxographic Mapping using 8-echo CPMG MRI Pulse Sequence

  • E-K. Jeong;Lee, S-H.;J-S. Suh;Y-Y wak;S-A. Shin;Y-K. Kwon;Y. Huh
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.7-20
    • /
    • 1997
  • The mapping of the spin-spin relaxation time T2 in pixed-by-pixel was suggested as a quantitative diagnostic tool in medicine. Although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any misregistration of each pixel's signal for the fitting T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17∼20 msec can give the reliable T2 map.

  • PDF

Imaging Characteristics of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors (비정질 평판형 측정기를 이용한 디지털 방사선 영상의 특징)

  • Jeong, Hoi-Woun;Kim, Jung-Min;Jeong, Man-Hee;Im, Eun-Kyung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiolographic technique for use with an amorphus silicon flat panel detector. The purpose of our study was to compared imaging characteristics and image quality of an amorphus silicon flat panel detectors for digital chest radiography. All examinations were performed by using an amorphus silicon flat panel detector. Chest radiographs of an chest phantom were obtained with peak kilovoltage values of 60$\sim$150 kVp. Published data ell the effect of x-ray beam energy on imaging characteristics and image qualify when using an amorphus silicon flat panel detector. It is important that radiographers are aware of optimum kVp selection for an amorphus silicon flat panel detector system, particularly for the commonly performed chest examination.

  • PDF

Effective Optical System Design for Biochip Analyzer with CCD Image System (CCD image system을 갖는 유전체칩 분석장치를 위한 효율적인 광학시스템 설계)

  • Bae, Su-Jin;Gang, Uk
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.488-491
    • /
    • 2003
  • Biochip-based diagnostic technology is an effective, time- and money- saving way. But, biochip analyzer including CCD imaging system has a complete optical system. It is one of reasons that the cost of biochip analyzer is expensive with CCD imaging system. In this paper, We suggested the simple and effective optical system for biochip analyzer with CCD imaging system. It consists of two parts with the same structure but opposite direction. Each part consists of achromatic doublet and meniscus. Suggested optical system has less lenses than existing system and more efficiently.

  • PDF

Positive Predictive Values of Abnormality Scores From a Commercial Artificial Intelligence-Based Computer-Aided Diagnosis for Mammography

  • Si Eun Lee;Hanpyo Hong;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.

Reproducibility of Hemispheric Language Dominance by Noun, Verb, Adjective and Adverb Generation Paradigms in Functional Magnetic Resonance Imaging of Normal Volunteers (정상성인의 뇌기능적 자기공명영상에서 명사, 동사, 형용사 그리고 부사 만들기 과제들에 대한 언어영역편재화의 재현성에 관한 연구)

  • In Chan Song;Kee Hyun Chang;Chun Kee Chung;Sang Hyun Lee;Moon Hee Han
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.24-32
    • /
    • 2001
  • Purpose : We investigated the reproducibility of language lateralization by 4 different word generation paradigms or the rest contents in each paradigm using functional magnetic resonance imaging in normal volunteers Materials and Methods Nine normal volunteers with left-handedness (mean age: 25 yrs) were examined on a 1.57 MR unit using a single-shot gradient echo epibold sequence. Four different word generation paradigms of noun, verb, adjective and adverb were used in each normal volunteer for investigating language system. In each paradigm, two different rest contents consisted of only seeing the " +" symbol or reading the meaningless letters. Each task consisted of 96 phases including 3 activations and 6 rests of 2 different contents. Two activation maps in one task were obtained under two different rest contents using the correlation method. We evaluated the detection rates of Broca and Wernicke areas and the differences of language lateralization among four different word generation paradigms, or between the rest contents. Results : The detection rates of Broca and Wernicke areas were over 67 % in 4 different language paradigms and there was no significant difference of them among language paradigms, or between two different rest contents. Language dominances, in all 4 different language paradigms, were shown to be consistent in 66 %, but were contrary with language paradigms in some subjects. The rest contents made no significant effect on dominant language dominance determination, but the success rates of the dominant language dominances determined from 4 language paradigms were higher in reading the meaningless letter (100%, n=9) than in only seeing "+" on screen at the rest task (78%, n=7).

  • PDF

Implementation of an Ultrasound Elasticity Imaging System

  • Cho Gae-Young;Yoon Ra-Young;Park Jeong-Man;Kwon Sung-Jae;Ahn Young-Bok;Bae Moo-Ho;Jeong Mok-Kun
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2006
  • Recently, active research has been going on to measure the elastic modulus of human soft tissue with medical ultrasound imaging systems for the purpose of diagnosing cancers or tumors which have been difficult to detect with conventional B-mode imaging techniques. In this paper, a real-time ultrasonic elasticity imaging system is implemented in software on a Pentium processor-based ultrasonic diagnostic imaging system. Soft tissue is subjected to external vibration, and the resulting tissue displacements change the phase of received echoes, which is in turn used to estimate tissue elasticity. It was confirmed from experiment with a phantom that the implemented elasticity imaging system could differentiate between soft and hard regions, where the latter is twice harder than the former, while operating at an adequate frame rate of 20 frames/s.