• 제목/요약/키워드: Diagnostic algorithm

검색결과 413건 처리시간 0.022초

SVM과 인공신경망을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구 (Defect Diagnostics of Gas Turbine Engine with Altitude Variation Using SVM and Artificial Neural Network)

  • 이상명;최원준;노태성;최동환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.209-212
    • /
    • 2006
  • 본 논문에서는 항공기용 터보 축 엔진의 결함 진단 알고리즘을 개발하지 위해 Support Vector Machine(SVM)과 인공신경망(ANN)을 이용하였다. SVM을 이용하여 결함 위치를 판별한 후 인공신경망이 선택적으로 학습하는 분할 학습 알고리즘(SLA)을 제안하였으며 이를 고도 변화에 따른 가스 터빈 엔진의 결함 진단에 적용하여 분류 속도 및 예측 정확률 개선 가능성을 확인하였다.

  • PDF

고속 주축의 상태모니터링 및 제어 알고리즘 설계 (Design of High Speed Spindles Active Monitoring and Control Algorithm)

  • 최현진;박철우;배정섭;안정훈;최성대
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.13-19
    • /
    • 2011
  • In this paper, the active monitoring and control system is developed. This system can monitor the status of high the speed spindle in real time during its processing, and can analyze its influence of dimensional accuracy and processing if any, and can control the machining condition to realize the machining system equipped with active monitoring and self-diagnostic features. Machining experiment was performed on 3 materials Al, Brass and S45C in order to derive the relation between active monitoring and control algorithm by the machining load. In addition, we measured surface roughness of processing specimen along with the data change of spindle rotating speed and conveying speed according to variation of machining load. Based on these experiments, we derived relations for each material that can be applied to the control algorithm to allow self control of the rotating speed and conveying speed according to the machining load.

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).

A Study on Jaundice Computer-aided Diagnosis Algorithm using Scleral Color based Machine Learning

  • Jeong, Jin-Gyo;Lee, Myung-Suk
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.131-136
    • /
    • 2018
  • This paper proposes a computer-aided diagnostic algorithm in a non-invasive way. Currently, clinical diagnosis of jaundice is performed through blood sampling. Unlike the old methods, the non-invasive method will enable parents to measure newborns' jaundice by only using their mobile phones. The proposed algorithm enables high accuracy and quick diagnosis through machine learning. In here, we used the SVM model of machine learning that learned the feature extracted through image preprocessing and we used the international jaundice research data as the test data set. As a result of applying our developed algorithm, it took about 5 seconds to diagnose jaundice and it showed a 93.4% prediction accuracy. The software is real-time diagnosed and it minimizes the infant's pain by non-invasive method and parents can easily and temporarily diagnose newborns' jaundice. In the future, we aim to use the jaundice photograph of the newborn babies' data as our test data set for more accurate results.

선형동적 시스템에서의 고장진단 알고리즘 (Fault Diagnosis Algorithm for Linear Dynamic System)

  • 문봉채;김지홍;김병국;변증남
    • 대한전자공학회논문지
    • /
    • 제23권6호
    • /
    • pp.874-880
    • /
    • 1986
  • A new diagnastic method for detection and location of faults in a linear time-invariant system is proposed. The fault detection algorithm is formulated in a signal space, while the fault location algorithm with estimation is done in a parameter space. In a way different from the conventional approach, the method of fault location with estimation is studied to apply the new concept to establish the models with an unknown parameter under the assumption of 1-fold fault. According to computer simulation, the proposed diagnostic method is effective as an algorithm for fault diagnosis of industdrial process controllers.

  • PDF

적외선 열화상 카메라를 이용한 퍼지추론 기반 열화진단 시스템 개발 (Development of Fuzzy Inference-based Deterioration Diagnosis System Using Infrared Thermal Imaging Camera)

  • 최우용;김종범;오성권;김영일
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.912-921
    • /
    • 2015
  • In this paper, we introduce fuzzy inference-based real-time deterioration diagnosis system with the aid of infrared thermal imaging camera. In the proposed system, the infrared thermal imaging camera monitors diagnostic field in real time and then checks state of deterioration at the same time. Temperature and variation of temperature obtained from the infrared thermal imaging camera variation are used as input variables. In addition to perform more efficient diagnosis, fuzzy inference algorithm is applied to the proposed system, and fuzzy rule is defined by If-then form and is expressed as lookup-table. While triangular membership function is used to estimate fuzzy set of input variables, that of output variable has singleton membership function. At last, state of deterioration in the present is determined based on output obtained through defuzzification. Experimental data acquired from deterioration generator and electric machinery are used in order to evaluate performance of the proposed system. And simulator is realized in order to confirm real-time state of diagnostic field

E-learning system to improve the endoscopic diagnosis of early gastric cancer

  • Kenshi Yao;Takashi Yao;Noriya Uedo;Hisashi Doyama;Hideki Ishikawa;Satoshi Nimura;Yuichi Takahashi
    • Clinical Endoscopy
    • /
    • 제57권3호
    • /
    • pp.283-292
    • /
    • 2024
  • We developed three e-learning systems for endoscopists to acquire the necessary skills to improve the diagnosis of early gastric cancer (EGC) and demonstrated their usefulness using randomized controlled trials. The subjects of the three e-learning systems were "detection", "characterization", and "preoperative assessment". The contents of each e-learning system included "technique", "knowledge", and "obtaining experience". All e-learning systems proved useful for endoscopists to learn how to diagnose EGC. Lecture videos describing "the technique" and "the knowledge" can be beneficial. In addition, repeating 100 self-study cases allows learners to gain "experience" and improve their diagnostic skills further. Web-based e-learning systems have more advantages than other teaching methods because the number of participants is unlimited. Histopathological diagnosis is the gold standard for the diagnosis of gastric cancer. Therefore, we developed a comprehensive diagnostic algorithm to standardize the histopathological diagnosis of gastric cancer. Once we have successfully shown that this algorithm is helpful for the accurate histopathological diagnosis of cancer, we will complete a series of e-learning systems designed to assess EGC accurately.

Head-to-Head Comparison between Xpert MTB/RIF Assay and Real-Time Polymerase Chain Reaction Assay Using Bronchial Washing Specimens for Tuberculosis Diagnosis

  • Son, Eunjeong;Jang, Jinook;Kim, Taehwa;Jang, Jin Ho;Chung, Jae Heun;Seol, Hee Yun;Yeo, Hye Ju;Yoon, Seong Hoon;Lee, Seung Eun;Cho, Woo Hyun;Kim, Yun Seong;Jeon, Doosoo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권1호
    • /
    • pp.89-95
    • /
    • 2022
  • Background: With the introduction of Xpert MTB/RIF assay (Xpert), its incorporation into tuberculosis (TB) diagnostic algorithm has become an important issue. The aim of this study was to evaluate the performance of the Xpert assay in comparison with a commercial polymerase chain reaction (PCR) assay. Methods: Medical records of patients having results of both Xpert and AdvanSure TB/NTM real-time PCR (AdvanSure) assays using the same bronchial washing specimens were retrospectively reviewed. Results: Of the 1,297 patients included in this study, 205 (15.8%) were diagnosed with pulmonary TB. Using mycobacterial culture as the reference method, sensitivity of the Xpert assay using smear-positive specimens was 97.5%, which was comparable to that of the AdvanSure assay (96.3%, p=0.193). However, the sensitivity of the Xpert assay using smear-negative specimens was 70.6%, which was significantly higher than that of the AdvanSure assay (52.9%, p=0.018). Usng phenotypic drug susceptibility testing as the reference method, sensitivity and specificity for detecting rifampicin resistance were 100% and 99.1%, respectively. Moreover, a median turnaround time of the Xpert assay was 1 day, which was significantly shorter than 3 days of the AdvanSure assay (p<0.001). Conclusion: In comparison with the AdvanSure assay, the Xpert assay had a higher sensitivity using smear-negative specimens, a shorter turnaround time, and could reliably predict rifampin resistance. Therefore, the Xpert assay might be preferentially recommended over TB-PCR in Korean TB diagnostic algorithm.

모바일 물리치료 진단 어플리케이션 개발 및 사용성 평가 (Development and Usability Evaluation of a Mobile Physical Therapeutic Diagnosis Application)

  • 이민형;김종순
    • PNF and Movement
    • /
    • 제21권1호
    • /
    • pp.129-137
    • /
    • 2023
  • Purpose: The physical therapy diagnosis process requires high-level background knowledge, the ability to obtain added information from patients, accurate examination skills, and a framework for transforming thoughts into a diagnostic decision. Thus, the physical therapy diagnostic process is highly complicated and difficult work. To function as autonomous professionals, physical therapists must develop effective clinical diagnosis skills. As such, mobile application aids can help with accurate and scientific diagnoses. Therefore, this study aims to develop and evaluate the usability of a mobile application for physical therapy diagnoses. Methods: In this study, a diagnostic application was developed using App Inventor, the development environment was the Chrome web browser for Windows 10, and the mobile application was run on a Google Pixel 5. The developed application was evaluated for usability by 20 physical therapists with more than 5 years of clinical experience in the musculoskeletal physical therapy field, and a usability evaluation was conducted using a 5-point Likert scale for accuracy, convenience, satisfaction, and usability. The collected Likert scores were converted into percentages and analyzed as descriptive statistics. Results: The graphical user interface consisted of an initial screen with program guidance, 18 screens presenting the algorithm, and 12 screens presenting the estimated diagnosis based on the algorithm. As such, the usability evaluation of the developed application was as follows: accuracy 100%, convenience 90%, satisfaction 91%, and usability 88%. Conclusion: The newly developed mobile application for physical therapeutic diagnoses has a high accuracy, and it will aid in building an easy and reliable physical therapy diagnosis system.

LI-RADS Version 2018 Treatment Response Algorithm: Diagnostic Performance after Transarterial Radioembolization for Hepatocellular Carcinoma

  • Jongjin Yoon;Sunyoung Lee;Jaeseung Shin;Seung-seob Kim;Gyoung Min Kim;Jong Yun Won
    • Korean Journal of Radiology
    • /
    • 제22권8호
    • /
    • pp.1279-1288
    • /
    • 2021
  • Objective: To assess the diagnostic performance of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 treatment response algorithm (TRA) for the evaluation of hepatocellular carcinoma (HCC) treated with transarterial radioembolization. Materials and Methods: This retrospective study included patients who underwent transarterial radioembolization for HCC followed by hepatic surgery between January 2011 and December 2019. The resected lesions were determined to have either complete (100%) or incomplete (< 100%) necrosis based on histopathology. Three radiologists independently reviewed the CT or MR images of pre- and post-treatment lesions and assigned categories based on the LI-RADS version 2018 and the TRA, respectively. Diagnostic performances of LI-RADS treatment response (LR-TR) viable and nonviable categories were assessed for each reader, using histopathology from hepatic surgeries as a reference standard. Inter-reader agreements were evaluated using Fleiss κ. Results: A total of 27 patients (mean age ± standard deviation, 55.9 ± 9.1 years; 24 male) with 34 lesions (15 with complete necrosis and 19 with incomplete necrosis on histopathology) were included. To predict complete necrosis, the LR-TR nonviable category had a sensitivity of 73.3-80.0% and a specificity of 78.9-89.5%. For predicting incomplete necrosis, the LR-TR viable category had a sensitivity of 73.7-79.0% and a specificity of 93.3-100%. Five (14.7%) of 34 treated lesions were categorized as LR-TR equivocal by consensus, with two of the five lesions demonstrating incomplete necrosis. Interreader agreement for the LR-TR category was 0.81 (95% confidence interval: 0.66-0.96). Conclusion: The LI-RADS version 2018 TRA can be used to predict the histopathologic viability of HCCs treated with transarterial radioembolization.