• Title/Summary/Keyword: Diagnostic algorithm

Search Result 418, Processing Time 0.027 seconds

Vapor Recognition Using Image Matching of Micro-Array Sensor Response from Portable Electronic Nose (휴대용 전자 후각 장치에서 다채널 마이크로 센서 신호의 영상 정합을 이용한 가스 인식)

  • Yang, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.64-70
    • /
    • 2011
  • Portable artificial electronic nose (E-nose) system suffers from noisy fluctuation in surroundings such as temperature, vapor concentration, and gas flow, because its measuring condition is not controled precisely as in the laboratory. It is important to develop a simple and robust vapor recognition technique applicable to this uncontrolled measurement, especially for the portable measuring and diagnostic system which are expanding its area with the improvements in micro bio sensor technology. This study used a PDA-based portable E-nose to collect the uncontrolled vapor measurement signals, and applied the image matching algorithm developed in the previous study on the measured signal to verify its robustness and improved accuracy in portable vapor recognition. The results showed not only its consistent performance under noisy fluctuation in the portable measurement signal, but also an advanced recognition accuracy for 2 similar vapor species which have been hard to discriminate with the conventional maximum sensitivity feature extraction method. The proposed method can be easily applied to the data processing of the ubiquitous sensor network (USN) which are usually exposed to various operating conditions. Furthermore, it will greatly help to realize portable medical diagnostic and environment monitoring system with its robust performance and high accuracy.

The Study of Optical Biopsy‘s Usefulness in Radiotherapy (방사선 치료에서 광학적 생검의 유용성에 관한 연구)

  • ;;Muller M.G.,;Feld M.S.
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The prior purpose of this study is to introduce a optical biopsy and evaluate whether the optical biopsy, real-time, non-invasive technique, is a reliable tool to assess response to radiotherapy Four healthy volunteers, and four patients with inflammatory conditions of the oral cavity participated on the study. was obtained from each person enrolled in the study. Using FastEEM(Ercited Emission Matrix) as a optical biopsy tool, normal and tumor spectra are taken from the normal and the tumor regions. And then second optical biopsy are taken from the tumor regions in 4 patients with time delay at 7days.. Using a diagnostic algorithm, made by Gillenwater based on spectra excited at 337nm The Optical Biopsy turned out to be more suited for tumor diagnostic resulting in significant difference fluorescence spectra. The fluorescence intensity of cancerous tissue showed a higher position. The second fluorescence intensity of optical biopsy of cancerous oral tissue has more smaller than the first result. I conclude that optical biopsy, which technique don't need to remove tissue sample from body, and is a real time , and non-invasive measurement is a reliable tool to access to radiotherapy because FastEEM can do measure the variation of the tissue composition chemical, biological, and morphological after radiotherapy. Based on the fluorescence spectrum are taken from the optical biopsy in normal and tumor spectra as well as tumor spectra after 7days.

  • PDF

Magnetic Resonance Elastography (자기 공명 탄성법)

  • Kim, Dong-Hyun;Yang, Jae-Won;Kim, Myeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.10-19
    • /
    • 2007
  • Conventional MRI methods using T1-, T2-, diffusion-, perfusion-weighting, and functional imaging rely on characterizing the physical and functional properties of the tissue. In this review, we introduce an imaging modality based on measured the mechanical properties of soft tissue, namely magnetic resonance elastography (MRE). The use of palpation to identify the stiffness of tissue remains a fundamental diagnostic tool. MRE can quantify the stiffness of the tissue thereby providing a objective means to measure the mechanical properties. To accomplish a successful clinical setting using MRE, hardware and software techniques in the area of transducer, pulse sequence, and imaging processing algorithm need to be developed. Transducer, a mechanical vibrator, is the core of MRE application to make wave propagate invivo. For this reason, considerations of the frame of human body, pressure and friction of the interface, and high magnetic field of a MRI system needs to be taken into account when designing a transducer. Given that the wave propagates through human body effectively, developing an appropriate pulse sequence is another important issue in obtaining an optimal image. In this review paper, we introduce the technical aspects needed for MRE experiments and introduce several applications of this new field.

  • PDF

A Basic Study on the Differential Diagnostic System of Laryngeal Diseases using Hierarchical Neural Networks (다단계 신경회로망을 이용한 후두질환 감별진단 시스템의 개발)

  • 전계록;김기련;권순복;예수영;이승진;왕수건
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • The objectives of this Paper is to implement a diagnostic classifier of differential laryngeal diseases from acoustic signals acquired in a noisy room. For this Purpose, the voice signals of the vowel /a/ were collected from Patients in a soundproof chamber and got mixed with noise. Then, the acoustic Parameters were analyzed, and hierarchical neural networks were applied to the data classification. The classifier had a structure of five-step hierarchical neural networks. The first neural network classified the group into normal and benign or malign laryngeal disease cases. The second network classified the group into normal or benign laryngeal disease cases The following network distinguished polyp. nodule. Palsy from the benign laryngeal cases. Glottic cancer cases were discriminated into T1, T2. T3, T4 by the fourth and fifth networks All the neural networks were based on multilayer perceptron model which classified non-linear Patterns effectively and learned by an error back-propagation algorithm. We chose some acoustic Parameters for classification by investigating the distribution of laryngeal diseases and Pilot classification results of those Parameters derived from MDVP. The classifier was tested by using the chosen parameters to find the optimum ones. Then the networks were improved by including such Pre-Processing steps as linear and z-score transformation. Results showed that 90% of T1, 100% of T2-4 were correctly distinguished. On the other hand. 88.23% of vocal Polyps, 100% of normal cases. vocal nodules. and vocal cord Paralysis were classified from the data collected in a noisy room.

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

A Recent Insight into the Diagnosis and Screening of Patients with Fabry Disease (파브리병 환자의 진단과 선별검사의 최신지견)

  • Hye-Ran Yoon;Jihun Jo
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.24 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • Fabry disease (FD) is an X-linked lysosomal storage disorder. It is caused by mutations in the α-galactosidase A gene, which results in deficient or absent activity of α-galactosidase A (α-Gal A). This leads to a progressive accumulation of globotriaosylceramide (Gb3) in various tissues. Manifestations of Fabry disease include serious and progressive impairment of renal and cardiac function. In addition, patients experience pain, gastrointestinal disturbance, transient ischaemic attacks, and strokes. Additional effects on the skin, eyes, ears, lungs, and bones are often seen. Reduced life expectancy and deadly consequences are being caused by cardiac involvement. Chaperone therapy or enzyme replacement therapy (ERT) are two disease-specific treatments for FD. Thus, early detection of FD is critical for decreasing morbidity and mortality. Globotriaosysphingosine (lyso-Gb3) for identifying atypical FD variants and highly sensitive troponin T (hsTNT) for detecting cardiac involvement are both significant diagnostic indicators. This review aimed to offer a basic resource for the early diagnosis and update on the diagnosis of having FD. We will also provide a general diagnostic algorithm and information on ERT and its accompanying treatments.

  • PDF

Clinical Study on the Sasang Constitutional Pulse Using Array Piezoresistive Sensor (어레이 압저항 센서를 활용한 체질맥 임상연구)

  • Lee, Si-Woo;Joo, Jong-Cheon;Kim, Kyung-Yo;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.1
    • /
    • pp.118-131
    • /
    • 2006
  • 1. Objective Pulse diagnosis is generally applied to Traditional Oriental Medicine but not to Sasang Constitution diagnosis. Recently new pulse analyzer using array piezoresistive sensor and multi-channel robot arm developed. It reflects Oriental Medical Doctors' diagnostic processes, and its reproducibility test was done at Korea Institute of Oriental Medicine. We performed this study to set parameters diagnosing Sasang Constitution. 2. Methods One hundred thirty three subjects participated in this study. They are healty and approved this study. Before being tested with pulse analyzer, they had interview with Sasang Constitution Specialist to diagnose their Sasang Constitution. We established some useful parameters from parameters of pulse analyzer according to the Original Texts of Oriental Medicine and clinical experiences to analyze with clinical data of this study. 3. Results (I) There is a significant difference in pre-dicrotic notch time among all parameters of pulse analyzer in Sasang Constitution groups(P=0.047). (2) There is a significant difference in maximum pulse pressure in 33 to 48 year Sasang Constitution groups(P=0.010). (3) There is a significant difference in frequency width in 17 to 32 year Sasang Constitution groups(P=0.002). (4) There is a significant difference in CFS value in groups which OMD diagnoses; Floating & Sinking pulse(P=0.020). (5) There is a significant difference in pulse rate in groups which OMD diagnoses; Rapid & Slow pulse(P=0.000). (6) There is a significant difference in maximum pulse pressure in groups which OMD diagnoses; Deficient & Solid pulse(P=0.000). 4. Conclusions Analyzing parameters in each Sasang Constitution group, we found it shows significant difference in maximum pulse pressure and corresponding tendency in coefficient of floating & sinking pulse with theories of Sasang Consti-tutional Medicine. As we accumulate more clinical data, we will establish algorithm to diagnose Sasang Constitution using a pulse analyzer.

  • PDF

3D feature profile simulation for nanoscale semiconductor plasma processing

  • Im, Yeon Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.1-61.1
    • /
    • 2015
  • Nanoscale semiconductor plasma processing has become one of the most challenging issues due to the limits of physicochemical fabrication routes with its inherent complexity. The mission of future and emerging plasma processing for development of next generation semiconductor processing is to achieve the ideal nanostructures without abnormal profiles and damages, such as 3D NAND cell array with ultra-high aspect ratio, cylinder capacitors, shallow trench isolation, and 3D logic devices. In spite of significant contributions of research frontiers, these processes are still unveiled due to their inherent complexity of physicochemical behaviors, and gaps in academic research prevent their predictable simulation. To overcome these issues, a Korean plasma consortium began in 2009 with the principal aim to develop a realistic and ultrafast 3D topography simulator of semiconductor plasma processing coupled with zero-D bulk plasma models. In this work, aspects of this computational tool are introduced. The simulator was composed of a multiple 3D level-set based moving algorithm, zero-D bulk plasma module including pulsed plasma processing, a 3D ballistic transport module, and a surface reaction module. The main rate coefficients in bulk and surface reaction models were extracted by molecular simulations or fitting experimental data from several diagnostic tools in an inductively coupled fluorocarbon plasma system. Furthermore, it is well known that realistic ballistic transport is a simulation bottleneck due to the brute-force computation required. In this work, effective parallel computing using graphics processing units was applied to improve the computational performance drastically, so that computer-aided design of these processes is possible due to drastically reduced computational time. Finally, it is demonstrated that 3D feature profile simulations coupled with bulk plasma models can lead to better understanding of abnormal behaviors, such as necking, bowing, etch stops and twisting during high aspect ratio contact hole etch.

  • PDF

Multimedia Expert System for a Nuclear Power Plant Accident diagnosis using a Fuzzy Inference Method (퍼지 추론 방법을 이용한 원자력 사고진단 시스템을 위한 멀티미디어 전문가 시스템)

  • Lee, Sang-Beom;Lee, Seong-Ju;Lee, Mal-Rye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.1
    • /
    • pp.14-24
    • /
    • 2001
  • The huge and complicated plants such as nuclear power stations are likely to cause the operators to make mistakes due to a variety of inexplicable reasons and symptoms in case of emergency. Thats why the prevention system assisting the operators is being developed for. First of all. I suggest an improved fuzzy diagnosis. Secondly. I want to demonstrate that a classification system of nuclear plants accident investigating the causes of accidents foresees possible problems. and maintains the reliability of the diagnostic reports in spite of improper working in part. In the event of emergency in a nuclear plant, a lot of operational steps enable the operators to find out what caused the problems based on an emergent operating plan. Our system is able to classify their types within twenty to thirty seconds. As so, we expect the system to put don the accidents right after the rapid detection of the damage control-method concerned.

  • PDF

Prevalence and Related Factors of Dementia in an Urban Elderly Population Using a New Screening Method (새로운 치매 선별검사를 이용한 도시지역 노인의 치매 유병률과 관련요인)

  • Shin, Hee-Young;Rhee, Jung-Ae;Yoon, Jin-Sang;Kim, Jae-Min;Chung, Eun-Kyung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.351-358
    • /
    • 2005
  • Objectives : Dementia has rapidly increased with the prolongation of life expectancy and aging in Korea. This study was conducted to estimate the prevalence of, and find related factors for, dementia in an urban elderly population, using a newly developed screening method. Methods : Seven hundred and six people, aged over 65 years-old, in Dong district of Gwangju, Korea, were recruited using stratified cluster sampling, and completed Korean version of Geriatric Mental State Schedule B3 (GMS B3-K), the Korean version of the Community Screening Interview for Dementia (CSID-K) and modified 10 word list-learning from the Consortium to Establish a Registry of Alzheimer's Disease (CERAD). Dementia was diagnosed by an algorithm derived from all three of these measures. Results : The crude and age adjusted prevalence rates of dementia were 13.0 and 11.5%, respectively. Age, education, marital status and a history of cerebrovascular disease were identified as factors related with dementia. Conclusions : The new instrument, using the GMS B3-K, CSID-K and modified 10 word list-learning from the CERAD, was considered effective as a community screening and diagnostic tool for dementia. The results of this study can also be used to develop a community-based prevention and management system for dementia in the future.