• 제목/요약/키워드: Diagnostic algorithm

검색결과 423건 처리시간 0.026초

췌장 지방 침착 정도에 따른 초음파 영상 평가 (Ultrasonic image assessment of the degree of pancreatic fat deposition)

  • 박혜인;박승훈;백윤승;이선빈;이은솔;허영대;조진영;고성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.490-492
    • /
    • 2016
  • 췌장 초음파 영상은 췌장비대증, 췌장지방증, 췌장암 등을 진단하기 위해서 사용된다. 췌장지방증의 진단은 췌장 초음파 영상에서 비장 실질보다 췌장 에코음영이 밝아진 경우 지방이 침착된 것으로 판단한다. 그리고 췌장암의 초음파 영상에 관한 연구는 활발히 이루어 졌지만 췌장 지방증에 관한 연구 사례는 미흡하다. 또한 췌장지방증은 그 진단 기준이 모호하고 숙련자의 주관적인 진단에 따른 오류가 많다. 이에 본 연구에서는 정상과 지방췌장의 영상에 GLCM algorithm을 적용하여 영상의 특징을 추출하고 추출된 특징값을 parameter를 이용하여 정량적인 분석을 하였다. GLCM algorithm을 이용하여 정상 89증례, 중등도 89증례, 고도 89증례 총 영상 267증례에 관심영역($5{\times}5pixel$)을 설정하고, 각 영상에서 Autocorrelation, Sum average, Sum of squares, Sum varience 4가지 parameter를 이용하여 분석하였다.

  • PDF

사상체질 진단검사를 위한 데이터마이닝 알고리즘 연구 (Data mining Algorithms for the Development of Sasang Type Diagnosis)

  • 홍진우;김영인;박소정;김병철;엄일규;황민우;신상우;김병주;권영규;채한
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1234-1240
    • /
    • 2009
  • This study was to compare the effectiveness and validity of various data-mining algorithm for Sasang type diagnostic test. We compared the sensitivity and specificity index of nine attribute selection and eleven class classification algorithms with 31 data-set characterizing Sasang typology and 10-fold validation methods installed in Waikato Environment Knowledge Analysis (WEKA). The highest classification validity score can be acquired as follows; 69.9 as Percentage Correctly Predicted index with Naive Bayes Classifier, 80 as sensitivity index with LWL/Tae-Eum type, 93.5 as specificity index with Naive Bayes Classifier/So-Eum type. The classification algorithm with highest PCP index of 69.62 after attribute selection was Naive Bayes Classifier. In this study we can find that the best-fit algorithm for traditional medicine is case sensitive and that characteristics of clinical circumstances, and data-mining algorithms and study purpose should be considered to get the highest validity even with the well defined data sets. It is also confirmed that we can't find one-fits-all algorithm and there should be many studies with trials and errors. This study will serve as a pivotal foundation for the development of medical instruments for Pattern Identification and Sasang type diagnosis on the basis of traditional Korean Medicine.

다양한 X-ray 촬영조건을 이용하여 획득한 skull 영상에서의 Total Variation 알고리즘의 가능성 연구 (A Study on Feasibility of Total Variation Algorithm in Skull Image using Various X-ray Exposure Parameters)

  • 박성우;이종인;이영진
    • 한국방사선학회논문지
    • /
    • 제13권5호
    • /
    • pp.765-771
    • /
    • 2019
  • Skull X-ray 영상에서 노이즈의 발생은 불가피하며, 이는 영상 화질과 진단 정확도를 저하시키고 디지털 영상 장치의 특성상 오류를 증가시킨다. 이러한 노이즈는 선량을 증가시키면 쉽게 감쇠되긴 하지만 환자가 받는 피폭선량이 더 큰 문제를 야기할 수 있다. 그래서 선량문제를 해결하고 동시에 노이즈를 줄이기 위해저 선량에서 노이즈 감소 알고리즘이 활발히 연구되고 있는데, 초기에 개발되고 널리 사용되어진 median filter와 Wiener filter는 노이즈 감소 효율이 떨어지고 영상경계에 대한 정보가 많이 손실된다는 단점이 있다. 본 연구의 목적은 이전 노이즈 감소효율의 문제점을 보완할 수 있는 total variation (TV) 알고리즘을 skull X-ray 영상에 적용하여 정량적으로 평가하고 비교를 하는 것이다. 이를 위해 Siemens사의 X-ray 장치를 사용하여 성인 skull을 모사할 수 있는 팬텀을 통해 다양한 관전압과 관전류량을 사용하여 실제 skull X-ray 팬텀 영상을 획득하였다. 또한, 각각의 팬텀 영상에 noisy image, median filter, Wiener filter, TV 알고리즘을 적용하였을 때의 대조도 대 잡음비 (CNR)와 변동계수 (COV)를 비교 측정했다. 실험 결과 TV 알고리즘을 적용하였을 때, 모든 조건에서 CNR와 COV 특성이 우수함을 확인할 수 있었다. 결론적으로 이번 연구를 통해 TV 알고리즘을 사용하여 영상의 질을 높일 수 있는지에 대해 확인해 보았고, 이론적으로 CNR 값은 관전류량이 증가할수록 노이즈가 감소함으로 인해 증가하는 것을 알아볼 수 있었다. 반면에, COV는 관전류량이 증가할수록 감소하였으며 관전압이 증가하였을 때 noise는 감소하고 투과량이 증가하여 COV가 감소하는 것을 알아볼 수 있었다.

다중 상황공간을 이용한 다중 오류의 고장 진단 (Diagnosing Multiple Faults using Multiple Context Spaces)

  • 이계성;권경희
    • 한국정보처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.137-148
    • /
    • 1997
  • 고장진단 문제는 지식기반 시스템를 이용해 해결하려는 시도가 많이 있어왔다. 그러나 대부분의 방식은 휴리스틱 또는 모델기반 방식으로 단일 오류에 대한 문제에 많은 노력이 이루어져 왔다. 단일 오류에 대한 고장진단문제 해결방식을 다중 오류진 단으로 확대할 때 발생하는 지수적인 계산비용은 피할 수 없는 문제점으로 지적되어 왔다. 이 논문에서는 시스템 구성에 따라 블록으로 구분하면 전체 탐색 영역을 국소 화할 수 있다는 점에 착안하여 다중 오류 진단을 위한 효율적인 알고리즘을 제안한 다. 이 알고리즘의 기본 원리는 오류진단을 위한 출력값 측정 지점에 따라 전체 회로 를 블록으로 나누고 다중오류에 대한 발생원인의 지수적 증가를 줄임으로 효율화 시 킬 수 있다. 각각의 블럭으로부터 발생하는 오류에 대해 결합하는 규칙을 개발하고 이를 통해 상호 논리적인 모순이 없는 최소 오류원인 집합을 구한다.

  • PDF

자궁 경부진 핵 추출에 관한 연구 (A Study on Nucleus Extraction of Uterine Cervical Pap-Smears)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제13권8호
    • /
    • pp.1699-1704
    • /
    • 2009
  • 자궁경부암은 다른 암과 달리 전암(前癌) 단계가 존재하므로 조기 발견할 경우에 생존율이 높다. 그러나 의사나 병리학자가 하루에 검진할 수 있는 양은 제한되어 있다. 따라서 본 논문에서는 세포 도말 검사에 사용되는 자궁 경부진 세포에서 핵을 추출하는 방법을 제안한다. 조기 자궁 경부 세포진 영상에서 핵의 추출은 영상의 배경 그리고 핵과 세포질 영역의 구분이 중요하기 때문에 Lighting Compensation을 적용하여 영상을 보정하고, 명암도의 분포가 가장 작은 B채널에서 $3{\times}3$ 마스크를 이용하여 잡음을 제거한다. 잡음이 제거된 영상을 이진화하고 Grassfire 알고리즘을 적용하여 세포 객체를 추출한다. 추출된 세포 객체 중에서 군집화된 세포 영역에 대해서는 R 채널의 명암도 값을 반복 이진화에 적용하여 핵 영역을 추출한다. 실제 진단 세포학에서 사용하는 자금경부 세포진 400 배율 영상을 대상으로 실험한 결과, 45개의 세포 영역 중에서 40개의 핵이 추출되었다.

Probabilistic-based damage identification based on error functions with an autofocusing feature

  • Gorgin, Rahim;Ma, Yunlong;Wu, Zhanjun;Gao, Dongyue;Wang, Yishou
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1121-1137
    • /
    • 2015
  • This study presents probabilistic-based damage identification technique for highlighting damage in metallic structures. This technique utilizes distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. Diagnostic signals were used to define the scatter signals of different paths. The energy of scatter signals till different times were calculated by taking root mean square of the scatter signals. For each pair of parallel paths an error function based on the energy of scatter signals is introduced. The resultant error function then is used to estimate the probability of the presence of damage in the monitoring area. The presented method with an autofocusing feature is applied to aluminum plates for method verification. The results identified using both simulation and experimental Lamb wave signals at different central frequencies agreed well with the actual situations, demonstrating the potential of the presented algorithm for identification of damage in metallic structures. An obvious merit of the presented technique is that in addition to damages located inside the region between transducers; those who are outside this region can also be monitored without any interpretation of signals. This novelty qualifies this method for online structural health monitoring.

Diagnostic characteristics of supplemental laboratory criteria for incomplete Kawasaki disease in children with complete Kawasaki disease

  • Jun, Hyun Ok;Yu, Jeong Jin;Kang, So Yeon;Seo, Chang Deok;Baek, Jae Suk;Kim, Young-Hwue;Ko, Jae-Kon
    • Clinical and Experimental Pediatrics
    • /
    • 제58권10호
    • /
    • pp.369-373
    • /
    • 2015
  • Purpose: In 2004, the American Heart Association (AHA) had published an algorithm for the diagnosis of incomplete Kawasaki disease (KD). The aim of the present study was to investigate characteristics of supplemental laboratory criteria in this algorithm. Methods: We retrospectively examined the medical records of 355 patients with KD who were treated with intravenous immunoglobulin (IVIG) during the acute phase of the disease. Laboratory data were obtained before the initial IVIG administration and up to 10 days after fever onset. In 106 patients, laboratory testing was performed more than twice. Results: The AHA supplemental laboratory criteria were fulfilled in 90 patients (25.4%), and the frequency of laboratory examination (odds ratio [OR], 1.981; 95% confidence interval [CI], 1.391-2.821; P<0.001) was a significant predictor of it. The fulfillment of AHA supplemental laboratory criteria was significantly associated with refractoriness to the initial IVIG administration (OR, 2.388; 95% CI, 1.182-4.826; P=0.013) and dilatation of coronary arteries (OR, 2.776; 95% CI, 1.519-5.074; P=0.001). Conclusion: Repeated laboratory testing increased the rate of fulfillment of the AHA supplemental laboratory criteria in children with KD.

전력용 변압기의 유중가스 해석을 위한 지능형 진단 알고리즘 개발 (Development of Artificial Diagnosis Algorithm for Dissolved Gas Analysis of Power Transformer)

  • 임재윤;이대종;이종필;지평식
    • 조명전기설비학회논문지
    • /
    • 제21권7호
    • /
    • pp.75-83
    • /
    • 2007
  • 일반적으로 변압기의 고장진단을 위해 IEC 코드법이 사용되지만, 이 방법은 가스비율이 규정된 범위 내에 존재하지 않거나 경계조건에 있는 경우 숙련된 진단 전문가에게 의뢰하지 않고는 정확한 고장의 원인을 판정하는데 어려움이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 SOM을 이용한 전력용 변압기의 고장진단 알고리즘을 제안한다. 제안된 방법은 훈련 데이터의 경쟁학습을 통하여 자기 구성 맵을 구축한 후, 실증 데이터를 구축된 맵에 적용하여 고장의 진단이 이루어진다. 또한 클러스터링 기법에 의해 구축된 정상/고장모델과 정상 데이터를 비교함으로써 고장의 추이 및 열화정도를 분석한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해 향상된 진단결과를 보임을 확인할 수 있었다.

다중 클래스 SVM을 이용한 스마트폰 중독 자가진단 시스템 (Self-diagnostic system for smartphone addiction using multiclass SVM)

  • 피수영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.13-22
    • /
    • 2013
  • 무선으로 응용 프로그램을 다운받아 실행하고 수많은 응용 프로그램들을 통신 접속이 없어도 실행이 가능하다는 점으로 인해 스마트폰 중독이 인터넷 중독보다 심각한 상태이지만 아직까지 스마트폰 중독과 관련된 연구가 부족한 상태이다. 한국정보화진흥원에서 개발한 스마트폰 중독 검사 척도인 S-척도는 문항수가 많아 응답자들이 진단 자체를 회피할 수도 있으며 인구통계학적 변인도 고려하지 않은 상태에서 체크한 문항들에 대한 총점만으로 중독여부를 진단하므로 정확하게 진단하는데 어려움이 있다. 따라서 본 논문에서는 인구통계학적 변인을 포함한 여러 문항들을 추가한 자료들을 대상으로 먼저 스마트폰 중독에 영향을 미치는 중요한 요인들을 추출해 보았다. 추출한 축소문항을 대상으로 데이터마이닝기법 중 하나인 신경망을 이용하여 분류를 하였다. 신경망 학습알고리즘 중에서 BP학습 알고리즘과 다중 SVM을 이용하여 학습을 시켜 비교, 분석 해 본 결과 다중 SVM의 학습율이 조금 더 높게 나타났다. 본 논문에서 제안한 다중 SVM을 이용하여 학습을 한 자가진단 시스템을 이용하면 자료들의 급격한 변화에 대해 뛰어난 적응성을 가지므로 빠른 시간 내에 자신의 중독여부를 정확하게 자가진단 할 수 있다.

서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할 (A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour)

  • 박재흥;서영건
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권12호
    • /
    • pp.101-109
    • /
    • 2012
  • TRUS영상에서 전립선에 대한 많은 진단과 치료 과정에서 정확한 전립선 경계의 추출이 요구된다. 여기에는 전립선 경계의 애매함, 반점, 낮은 그레이 레벨로 인하여 많은 어려움이 존재한다. 본 논문에서는 서포트 벡터와 뱀형상 윤곽선을 이용하여 TRUS영상의 자동 전립선 분할에 대한 방법을 제안한다. 이 방법은 전처리, 가버 특성 추출, 학습, 전립선 추출 단계로 구성된다. 텍스처 특성을 추출하기 위하여 가버 필터 뱅크가 사용되며, 학습 과정에서 전립선과 비전립선의 각 특성을 얻기 위하여, SVM이 사용된다. 전립선의 경계는 뱀형상 윤곽 알고리즘에 의해 추출된다. 실험 결과, 제안된 알고리즘은 인간 전문가가 추출한 경계와 비교했을 때 9.3%보다 적은 차이로 전립선 경계를 추출할 수 있었다.