췌장 초음파 영상은 췌장비대증, 췌장지방증, 췌장암 등을 진단하기 위해서 사용된다. 췌장지방증의 진단은 췌장 초음파 영상에서 비장 실질보다 췌장 에코음영이 밝아진 경우 지방이 침착된 것으로 판단한다. 그리고 췌장암의 초음파 영상에 관한 연구는 활발히 이루어 졌지만 췌장 지방증에 관한 연구 사례는 미흡하다. 또한 췌장지방증은 그 진단 기준이 모호하고 숙련자의 주관적인 진단에 따른 오류가 많다. 이에 본 연구에서는 정상과 지방췌장의 영상에 GLCM algorithm을 적용하여 영상의 특징을 추출하고 추출된 특징값을 parameter를 이용하여 정량적인 분석을 하였다. GLCM algorithm을 이용하여 정상 89증례, 중등도 89증례, 고도 89증례 총 영상 267증례에 관심영역($5{\times}5pixel$)을 설정하고, 각 영상에서 Autocorrelation, Sum average, Sum of squares, Sum varience 4가지 parameter를 이용하여 분석하였다.
This study was to compare the effectiveness and validity of various data-mining algorithm for Sasang type diagnostic test. We compared the sensitivity and specificity index of nine attribute selection and eleven class classification algorithms with 31 data-set characterizing Sasang typology and 10-fold validation methods installed in Waikato Environment Knowledge Analysis (WEKA). The highest classification validity score can be acquired as follows; 69.9 as Percentage Correctly Predicted index with Naive Bayes Classifier, 80 as sensitivity index with LWL/Tae-Eum type, 93.5 as specificity index with Naive Bayes Classifier/So-Eum type. The classification algorithm with highest PCP index of 69.62 after attribute selection was Naive Bayes Classifier. In this study we can find that the best-fit algorithm for traditional medicine is case sensitive and that characteristics of clinical circumstances, and data-mining algorithms and study purpose should be considered to get the highest validity even with the well defined data sets. It is also confirmed that we can't find one-fits-all algorithm and there should be many studies with trials and errors. This study will serve as a pivotal foundation for the development of medical instruments for Pattern Identification and Sasang type diagnosis on the basis of traditional Korean Medicine.
Skull X-ray 영상에서 노이즈의 발생은 불가피하며, 이는 영상 화질과 진단 정확도를 저하시키고 디지털 영상 장치의 특성상 오류를 증가시킨다. 이러한 노이즈는 선량을 증가시키면 쉽게 감쇠되긴 하지만 환자가 받는 피폭선량이 더 큰 문제를 야기할 수 있다. 그래서 선량문제를 해결하고 동시에 노이즈를 줄이기 위해저 선량에서 노이즈 감소 알고리즘이 활발히 연구되고 있는데, 초기에 개발되고 널리 사용되어진 median filter와 Wiener filter는 노이즈 감소 효율이 떨어지고 영상경계에 대한 정보가 많이 손실된다는 단점이 있다. 본 연구의 목적은 이전 노이즈 감소효율의 문제점을 보완할 수 있는 total variation (TV) 알고리즘을 skull X-ray 영상에 적용하여 정량적으로 평가하고 비교를 하는 것이다. 이를 위해 Siemens사의 X-ray 장치를 사용하여 성인 skull을 모사할 수 있는 팬텀을 통해 다양한 관전압과 관전류량을 사용하여 실제 skull X-ray 팬텀 영상을 획득하였다. 또한, 각각의 팬텀 영상에 noisy image, median filter, Wiener filter, TV 알고리즘을 적용하였을 때의 대조도 대 잡음비 (CNR)와 변동계수 (COV)를 비교 측정했다. 실험 결과 TV 알고리즘을 적용하였을 때, 모든 조건에서 CNR와 COV 특성이 우수함을 확인할 수 있었다. 결론적으로 이번 연구를 통해 TV 알고리즘을 사용하여 영상의 질을 높일 수 있는지에 대해 확인해 보았고, 이론적으로 CNR 값은 관전류량이 증가할수록 노이즈가 감소함으로 인해 증가하는 것을 알아볼 수 있었다. 반면에, COV는 관전류량이 증가할수록 감소하였으며 관전압이 증가하였을 때 noise는 감소하고 투과량이 증가하여 COV가 감소하는 것을 알아볼 수 있었다.
고장진단 문제는 지식기반 시스템를 이용해 해결하려는 시도가 많이 있어왔다. 그러나 대부분의 방식은 휴리스틱 또는 모델기반 방식으로 단일 오류에 대한 문제에 많은 노력이 이루어져 왔다. 단일 오류에 대한 고장진단문제 해결방식을 다중 오류진 단으로 확대할 때 발생하는 지수적인 계산비용은 피할 수 없는 문제점으로 지적되어 왔다. 이 논문에서는 시스템 구성에 따라 블록으로 구분하면 전체 탐색 영역을 국소 화할 수 있다는 점에 착안하여 다중 오류 진단을 위한 효율적인 알고리즘을 제안한 다. 이 알고리즘의 기본 원리는 오류진단을 위한 출력값 측정 지점에 따라 전체 회로 를 블록으로 나누고 다중오류에 대한 발생원인의 지수적 증가를 줄임으로 효율화 시 킬 수 있다. 각각의 블럭으로부터 발생하는 오류에 대해 결합하는 규칙을 개발하고 이를 통해 상호 논리적인 모순이 없는 최소 오류원인 집합을 구한다.
자궁경부암은 다른 암과 달리 전암(前癌) 단계가 존재하므로 조기 발견할 경우에 생존율이 높다. 그러나 의사나 병리학자가 하루에 검진할 수 있는 양은 제한되어 있다. 따라서 본 논문에서는 세포 도말 검사에 사용되는 자궁 경부진 세포에서 핵을 추출하는 방법을 제안한다. 조기 자궁 경부 세포진 영상에서 핵의 추출은 영상의 배경 그리고 핵과 세포질 영역의 구분이 중요하기 때문에 Lighting Compensation을 적용하여 영상을 보정하고, 명암도의 분포가 가장 작은 B채널에서 $3{\times}3$ 마스크를 이용하여 잡음을 제거한다. 잡음이 제거된 영상을 이진화하고 Grassfire 알고리즘을 적용하여 세포 객체를 추출한다. 추출된 세포 객체 중에서 군집화된 세포 영역에 대해서는 R 채널의 명암도 값을 반복 이진화에 적용하여 핵 영역을 추출한다. 실제 진단 세포학에서 사용하는 자금경부 세포진 400 배율 영상을 대상으로 실험한 결과, 45개의 세포 영역 중에서 40개의 핵이 추출되었다.
This study presents probabilistic-based damage identification technique for highlighting damage in metallic structures. This technique utilizes distributed piezoelectric transducers to generate and monitor the ultrasonic Lamb wave with narrowband frequency. Diagnostic signals were used to define the scatter signals of different paths. The energy of scatter signals till different times were calculated by taking root mean square of the scatter signals. For each pair of parallel paths an error function based on the energy of scatter signals is introduced. The resultant error function then is used to estimate the probability of the presence of damage in the monitoring area. The presented method with an autofocusing feature is applied to aluminum plates for method verification. The results identified using both simulation and experimental Lamb wave signals at different central frequencies agreed well with the actual situations, demonstrating the potential of the presented algorithm for identification of damage in metallic structures. An obvious merit of the presented technique is that in addition to damages located inside the region between transducers; those who are outside this region can also be monitored without any interpretation of signals. This novelty qualifies this method for online structural health monitoring.
Purpose: In 2004, the American Heart Association (AHA) had published an algorithm for the diagnosis of incomplete Kawasaki disease (KD). The aim of the present study was to investigate characteristics of supplemental laboratory criteria in this algorithm. Methods: We retrospectively examined the medical records of 355 patients with KD who were treated with intravenous immunoglobulin (IVIG) during the acute phase of the disease. Laboratory data were obtained before the initial IVIG administration and up to 10 days after fever onset. In 106 patients, laboratory testing was performed more than twice. Results: The AHA supplemental laboratory criteria were fulfilled in 90 patients (25.4%), and the frequency of laboratory examination (odds ratio [OR], 1.981; 95% confidence interval [CI], 1.391-2.821; P<0.001) was a significant predictor of it. The fulfillment of AHA supplemental laboratory criteria was significantly associated with refractoriness to the initial IVIG administration (OR, 2.388; 95% CI, 1.182-4.826; P=0.013) and dilatation of coronary arteries (OR, 2.776; 95% CI, 1.519-5.074; P=0.001). Conclusion: Repeated laboratory testing increased the rate of fulfillment of the AHA supplemental laboratory criteria in children with KD.
일반적으로 변압기의 고장진단을 위해 IEC 코드법이 사용되지만, 이 방법은 가스비율이 규정된 범위 내에 존재하지 않거나 경계조건에 있는 경우 숙련된 진단 전문가에게 의뢰하지 않고는 정확한 고장의 원인을 판정하는데 어려움이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 SOM을 이용한 전력용 변압기의 고장진단 알고리즘을 제안한다. 제안된 방법은 훈련 데이터의 경쟁학습을 통하여 자기 구성 맵을 구축한 후, 실증 데이터를 구축된 맵에 적용하여 고장의 진단이 이루어진다. 또한 클러스터링 기법에 의해 구축된 정상/고장모델과 정상 데이터를 비교함으로써 고장의 추이 및 열화정도를 분석한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해 향상된 진단결과를 보임을 확인할 수 있었다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.13-22
/
2013
무선으로 응용 프로그램을 다운받아 실행하고 수많은 응용 프로그램들을 통신 접속이 없어도 실행이 가능하다는 점으로 인해 스마트폰 중독이 인터넷 중독보다 심각한 상태이지만 아직까지 스마트폰 중독과 관련된 연구가 부족한 상태이다. 한국정보화진흥원에서 개발한 스마트폰 중독 검사 척도인 S-척도는 문항수가 많아 응답자들이 진단 자체를 회피할 수도 있으며 인구통계학적 변인도 고려하지 않은 상태에서 체크한 문항들에 대한 총점만으로 중독여부를 진단하므로 정확하게 진단하는데 어려움이 있다. 따라서 본 논문에서는 인구통계학적 변인을 포함한 여러 문항들을 추가한 자료들을 대상으로 먼저 스마트폰 중독에 영향을 미치는 중요한 요인들을 추출해 보았다. 추출한 축소문항을 대상으로 데이터마이닝기법 중 하나인 신경망을 이용하여 분류를 하였다. 신경망 학습알고리즘 중에서 BP학습 알고리즘과 다중 SVM을 이용하여 학습을 시켜 비교, 분석 해 본 결과 다중 SVM의 학습율이 조금 더 높게 나타났다. 본 논문에서 제안한 다중 SVM을 이용하여 학습을 한 자가진단 시스템을 이용하면 자료들의 급격한 변화에 대해 뛰어난 적응성을 가지므로 빠른 시간 내에 자신의 중독여부를 정확하게 자가진단 할 수 있다.
TRUS영상에서 전립선에 대한 많은 진단과 치료 과정에서 정확한 전립선 경계의 추출이 요구된다. 여기에는 전립선 경계의 애매함, 반점, 낮은 그레이 레벨로 인하여 많은 어려움이 존재한다. 본 논문에서는 서포트 벡터와 뱀형상 윤곽선을 이용하여 TRUS영상의 자동 전립선 분할에 대한 방법을 제안한다. 이 방법은 전처리, 가버 특성 추출, 학습, 전립선 추출 단계로 구성된다. 텍스처 특성을 추출하기 위하여 가버 필터 뱅크가 사용되며, 학습 과정에서 전립선과 비전립선의 각 특성을 얻기 위하여, SVM이 사용된다. 전립선의 경계는 뱀형상 윤곽 알고리즘에 의해 추출된다. 실험 결과, 제안된 알고리즘은 인간 전문가가 추출한 경계와 비교했을 때 9.3%보다 적은 차이로 전립선 경계를 추출할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.