• Title/Summary/Keyword: Diagnostic algorithm

Search Result 413, Processing Time 0.024 seconds

Establishment of Diagnostic Criteria in the Preventive Diagnostic System for the Power Transformer (전력용 변압기 예방진단새스템의 진단기준치 실정)

  • Kweon Dong-Jin;Koo Kyo-Sun;Kwak Joo-Sik;Woo Jung-Wook;Kang Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.449-456
    • /
    • 2005
  • The preventive diagnostic technique prevents transformers from power failure through giving alarm and observing transformers in service. And it helps to establish the plan for optimum maintenance of the transformer as well as to find location or cause of fault using accumulated data. Data detection and experience of the preventive diagnostic system need to establish the preventive diagnostic algorithm regarding interrelationship between detected data and deterioration of equipment. Therefore in-depth analysis about the preventive diagnosis system is required. KEPCO has adopted the preventive diagnostic system at nine 345kV substations since 1997. Techniques for component sensors of the preventive diagnosis system were settled but diagnosis algorithm, diagnostic criteria and practical use of accumulated data are not yet established. This paper, to build up the base of preventive diagnostic algorithm for the Power transformer. investigated the preventive diagnostic criteria for the power transformer.

A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP

  • Park, Ji Hun;Jo, Hye Seon;Lee, Sang Hyun;Oh, Sang Won;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1271-1287
    • /
    • 2022
  • When abnormal operating conditions occur in nuclear power plants, operators must identify the occurrence cause and implement the necessary mitigation measures. Accordingly, the operator must rapidly and accurately analyze the symptom requirements of more than 200 abnormal scenarios from the trends of many variables to perform diagnostic tasks and implement mitigation actions rapidly. However, the probability of human error increases owing to the characteristics of the diagnostic tasks performed by the operator. Researches regarding diagnostic tasks based on Artificial Intelligence (AI) have been conducted recently to reduce the likelihood of human errors; however, reliability issues due to the black box characteristics of AI have been pointed out. Hence, the application of eXplainable Artificial Intelligence (XAI), which can provide AI diagnostic evidence for operators, is considered. In conclusion, the XAI to solve the reliability problem of AI is included in the AI-based diagnostic algorithm. A reliable intelligent diagnostic assistant based on a merged diagnostic algorithm, in the form of an operator support system, is developed, and includes an interface to efficiently inform operators.

Diagnostic Test Pattern Generation for Combinational Circuits (조합회로에 대한 고장 진단 검사신호 생성)

  • Park, Young-Ho;Min, Hyoung-Bok;Lee, Jae-Hoon;Shin, Yong-Whan
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.9
    • /
    • pp.44-53
    • /
    • 1999
  • Generating diagnostic test patterns for combinational circuits remain to be a very difficult problem. For example, ISCAS85 c7552 benchmark circuit has 100 million fault pairs, Thus, we need more sophisticated algorithm to get more information. A new diagnostic algorithm for test pattern generation is suggested and implemented in this paper. DIATEST algorithm based on PODEM is also implemented for comparison to the new algorithm. These two algorithms have been applied to ISCAS85 benchmark circuits. Experimental results show that (1) both algorithms achieve fault pair coverage over 99%, (2) total test length of the new algorithm is much shorter than that of DIATEST, and (3) the new algorithm gives much more information used for making diagnostic dictionary, diagnostic decision tree or diagnostic test system despite DIATEST is faster than the new algorithm.

  • PDF

Investigation of the Preventive Diagnostic Criteria for Power Transformer (전력용 변압기 예방진단 기준치 검토)

  • Kweon, D.J.;Koo, K.S.;Kang, Y.W.;Woo, J.W.;Kwak, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.592-596
    • /
    • 2005
  • The preventive diagnostic system prevents transformers from power failure by giving alarm and observing transformers in service. And it helps to establish the plan for optimum maintenance of transformer as well as to find location or cause of fault using accumulated data. KEPCO has adopted the preventive diagnostic system at nine 345kV substations since 1997. Techniques for component sensors of preventive diagnostic system were settled but diagnostic algorithm, diagnostic criteria and practical use of accumulated data are not yet established. This paper, to build up the base of preventive diagnostic algorithm for the power transformer, investigated the preventive diagnostic criteria for power transformer.

  • PDF

Medical Image Compression using Adaptive Subband Threshold

  • Vidhya, K
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.499-507
    • /
    • 2016
  • Medical imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Ultrasound (US) produce a large amount of digital medical images. Hence, compression of digital images becomes essential and is very much desired in medical applications to solve both storage and transmission problems. But at the same time, an efficient image compression scheme that reduces the size of medical images without sacrificing diagnostic information is required. This paper proposes a novel threshold-based medical image compression algorithm to reduce the size of the medical image without degradation in the diagnostic information. This algorithm discusses a novel type of thresholding to maximize Compression Ratio (CR) without sacrificing diagnostic information. The compression algorithm is designed to get image with high optimum compression efficiency and also with high fidelity, especially for Peak Signal to Noise Ratio (PSNR) greater than or equal to 36 dB. This value of PSNR is chosen because it has been suggested by previous researchers that medical images, if have PSNR from 30 dB to 50 dB, will retain diagnostic information. The compression algorithm utilizes one-level wavelet decomposition with threshold-based coefficient selection.

Comparative Study on the Selection Algorithm of CLINAID using Fuzzy Relational Products

  • Noe, Chan-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.849-855
    • /
    • 2008
  • The Diagnostic Unit of CLINAID can infer working diagnoses for general diseases from the information provided by a user. This user-provided information in the form of signs and symptoms, however, is usually not sufficient to make a final decision on a working diagnosis. In order for the Diagnostic Unit to reach a diagnostic conclusion, it needs to select suitable clinical investigations for the patients. Because different investigations can be selected for the same patient, we need a process that can optimize the selection procedure employed by the Diagnostic Unit. This process, called a selection algorithm, must work with the fuzzy relational method because CLINAID uses fuzzy relational structures extensively for its knowledge bases and inference mechanism. In this paper we present steps of the selection algorithm along with simulation results on this algorithm using fuzzy relational products, both harsh product and mean product. The computation results of applying several different fuzzy implication operators are compared and analyzed.

Inspection On Sensors of Online Preventive diagnostic system Sensors for Power Transformer (변압기 온라인 예방진단 센서의 점검현황)

  • Koo, Kyo-Sun;Kweon, Dong-Jin;Chin, Sang-Bum;Kwak, Joo-Sik;Kang, Yeon-Woog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.455-460
    • /
    • 2005
  • Preventive diagnostic system for power transformer prevents the sudden power failure through monitoring of abnormal symptoms. KEPCO has adopted the preventive diagnostic system at nine 345kV substations since 1997. Application techniques of the diagnostic sensors were settled, but diagnostic algorithm and practical use of accumulated data are not yet established. To build up the diagnostic algorithm and effective use of the preventive diagnostic system, the reliability of the data accumulated in a server computer is very important. Therefore, this paper describes problem when apply system to substation and solution way to improve reliability of the system

  • PDF

Analysis of the Data Reliability for the Preventive Diagnostic System (예방진단시스템의 데이터 신뢰성 분석)

  • Kweon, Dong-Jin;Chin, Sang-Bum;Kwak, Joo-Sik;Woo, Jung-Wook;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • Abnormal symptoms on operating conditions of power transformer are monitored by a preventive diagnostic system which prevents the sudden power failure in case of quick progress of abnormal situation. The preventive diagnostic system helps plan the proper maintenance method according to the transformer conditions via accumulated data. KEPCO has adopted the preventive diagnostic system at nine of 345kV substations since 1997. Application techniques of the diagnostic sensors were settled, but diagnostic algorithm and practical use of accumulated data are not yet established. To build up the diagnostic algorithm and effective use of the preventive diagnostic system, the reliability of the data which were accumulated in a server computer is very important. This paper describes the data analysis in the server in order to advance the reliability of the accumulated data of the preventive diagnostic system. The principles and data flows of the diagnostic sensors were analyzed, and the data discrepancy between sensors and server were calibrated.

A Study of Diagnostic Algorithm for Quantitative Evaluation of the Stress Urinary Incontinence (복압성요실금의 정량적 평가를 위한 진단 알고리즘에 관한 연구)

  • Min, Hae-Ki;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of IKEEE
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • Pelvic floor muscle is the main subsystem that maintains urinary continence. It is possible to diagnose the degree of the stress urinary incontinence(SUI) by evaluating the contraction pressure of the pelvic floor muscle. Bio-signal measurement system was developed to measure the contraction pressure. Diagnostic parameters were drawn out by analyzing the measured data. Statistical evaluations were done to classify the all subjects with five groups each has similar characteristics. SUI diagnostic algorithm was implemented to each group separately. The accuracy of the algorithm was about 78.9% and utility was confirmed by clinical trial.

  • PDF

Diagnosis Method for Power Transformer using Intelligent Algorithm based on ELM and Fuzzy Membership Function (ELM 기반의 지능형 알고리즘과 퍼지 소속함수를 이용한 유입변압기 고장진단 기법)

  • Lim, Jae-Yoon;Lee, Dae-Jong;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.194-199
    • /
    • 2017
  • Power transformers are an important factor for power transmission and cause fatal losses if faults occur. Various diagnostic methods have been applied to predict the failure and to identify the cause of the failure. Typical diagnostic methods include the IEC diagnostic method, the Duval diagnostic method, the Rogers diagnostic method, and the Doernenburg diagnostic method using the ratio of the main gas. However, each diagnostic method has a disadvantage in that it can't diagnose the state of the power transformer unless the gas ratio is within the defined range. In order to solve these problems, we propose a diagnosis method using ELM based intelligent algorithm and fuzzy membership function. The final diagnosis is performed by multiplying the result of diagnosis in the four diagnostic methods (IEC, Duval, Rogers, and Doernenburg) by the fuzzy membership values. To show its effectiveness, the proposed fault diagnostic system has been intensively tested with the dissolved gases acquired from various power transformers.