• 제목/요약/키워드: DeviceNet

검색결과 299건 처리시간 0.019초

A real-time sorting algorithm for in-beam PET of heavy-ion cancer therapy device

  • Ke, Lingyun;Yan, Junwei;Chen, Jinda;Wang, Changxin;Zhang, Xiuling;Du, Chengming;Hu, Minchi;Yang, Zuoqiao;Xu, Jiapeng;Qian, Yi;She, Qianshun;Yang, Haibo;Zhao, Hongyun;Pu, Tianlei;Pei, Changxu;Su, Hong;Kong, Jie
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3406-3412
    • /
    • 2021
  • A real-time digital time-stamp sorting algorithm used in the In-Beam positron emission tomography (In-Beam PET) is presented. The algorithm is operated in the field programmable gate array (FPGA) and a small amount of registers, MUX and memory cells are used. It is developed for sorting the data of annihilation event from front-end circuits, so as to identify the coincidence events efficiently in a large amount of data. In the In-Beam PET, each annihilation event is detected by the detector array and digitized by the analog to digital converter (ADC) in Data Acquisition Unit (DAQU), with a resolution of 14 bits and sampling rate of 50 MS/s. Test and preliminary operation have been implemented, it can perform a sorting operation under the event count rate up to 1 MHz per channel, and support four channels in total, count rate up to 4 MHz. The performance of this algorithm has been verified by pulse generator and 22Na radiation source, which can sort the events with chaotic order into chronological order completely. The application of this algorithm provides not only an efficient solution for selection of coincidence events, but also a design of electronic circuit with a small-scale structure.

Smart Grid를 위한 필드형 가상사설망(VPN) 게이트웨이의 구현 (A Study on the Implementation of outdoor type Virtual Private Network Gateway for Smart Grid)

  • 박준영;김휘강
    • 정보보호학회논문지
    • /
    • 제21권4호
    • /
    • pp.125-136
    • /
    • 2011
  • 우리나라의 전력분야 제어시스템은 보안에 우수한 폐쇄형 네트워크로 운영되고 있어 보안피해의 심각성을 대체로 인지하지 못하고 있다. 앞으로 스마트그리드 사업이 지속적으로 확대되면 스마트미터에서부터 발전소에 이르기까지 다양한 형태의 사이버공격이 이루어질 수 있다. 향후 스마트미터를 통해 발전소에서 가정집까지의 전체 전력망이 연결되면 보안은 더욱 중요한 요소가 될 것이다. 본 연구에서는 스마트그리드 환경 즉, 외부의 혹독한 환경과 전국적인망에서의 안정적 데이터 전송과 외부로부터의 침입방지를 위해 필요한 가상사설망(VPN) Gateway 구조를 설계 및 구현하였다. 본 연구를 통해 완성된 시제품으로 기 운영 중인 상용제품과 다양한 방식으로 연동 테스트를 시행하였으며, IPSec 방식의 터널링과 ARIA 암호화 알고리즘을 통한 암호화를 통해 전력선통신(PLC) 저압원격검침 분야에 시범 설치되어 보안이 강화된 데이터통신을 하고 있다.

Transient simulation and experiment validation on the opening and closing process of a ball valve

  • Han, Yong;Zhou, Ling;Bai, Ling;Xue, Peng;Lv, Wanning;Shi, Weidong;Huang, Gaoyang
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1674-1685
    • /
    • 2022
  • The ball valve is an important device in the pipeline transportation system of nuclear power plants. Its operational stability and safety directly affect the normal working of nuclear power plants. In this study, the transient numerical simulation of the opening and closing process of a ball valve was conducted on the basis of the flow interruption capability experiment of the ball valve by using the moving mesh method and inlet and outlet variable boundary conditions. The flow rate and pressure difference with time of the opening and closing process of the ball valve were studied. The internal flow characteristics of the ball valve under different relative openings were analyzed in conjunction with the typical back-step flow structure. Results show that the transient numerical results agree well with the experimental results. The internal flow characteristics of the ball valve are similar at the same opening during opening and closing process. At small opening, the spool and outlet channels easily form a back-step flow structure. The disappearance and generation of backflow vortices during opening and closing occur at 85% opening and 75% opening, respectively. With the decrease in opening degree, the difference in vortex core area in the flow channel of the ball valve spool in the opening and closing process gradually appears. The research results provide some reference value for the design and optimization of ball valves.

Radionuclide identification method for NaI low-count gamma-ray spectra using artificial neural network

  • Qi, Sheng;Wang, Shanqiang;Chen, Ye;Zhang, Kun;Ai, Xianyun;Li, Jinglun;Fan, Haijun;Zhao, Hui
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.269-274
    • /
    • 2022
  • An artificial neural network (ANN) that identifies radionuclides from low-count gamma spectra of a NaI scintillator is proposed. The ANN was trained and tested using simulated spectra. 14 target nuclides were considered corresponding to the requisite radionuclide library of a radionuclide identification device mentioned in IEC 62327-2017. The network shows an average identification accuracy of 98.63% on the validation dataset, with the gross counts in each spectrum Nc = 100~10000 and the signal to noise ratio SNR = 0.05-1. Most of the false predictions come from nuclides with low branching ratio and/or similar decay energies. If the Nc>1000 and SNR>0.3, which is defined as the minimum identifiable condition, the averaged identification accuracy is 99.87%. Even when the source and the detector are covered with lead bricks and the response function of the detector thus varies, the ANN which was trained using non-shielding spectra still shows high accuracy as long as the minimum identifiable condition is satisfied. Among all the considered nuclides, only the identification accuracy of 235U is seriously affected by the shielding. Identification of other nuclides shows high accuracy even the shielding condition is changed, which indicates that the ANN has good generalization performance.

Experimental investigation on the degradation of SiGe LNAs under different bias conditions induced by 3 MeV proton irradiation

  • Li, Zhuoqi;Liu, Shuhuan;Ren, Xiaotang;Adekoya, Mathew Adefusika;Zhang, Jun;Liu, Shuangying
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.661-665
    • /
    • 2022
  • The 3 MeV proton irradiation effects on SiGe low noise amplifier (LNA) (NXP BGU7005) performance under different voltage supply VCC (0 V, 2.5 V) conditions were firstly experimental studied in this present work. The S parameters including S11, S22, S21, 1 dB compression point and noise figure (NF) of the test samples under different bias voltage supply were measured and compared before and after 3 MeV proton irradiation. The total proton irradiation fluence was 1 × 1015 protons/cm2. The maximum degradation quantities of the gain S21 and NF of the test samples under zero bias are measured respectively 1.6 dB and 1.2 dB. Compared with the samples under 2.5 V bias supply, the maximum degradation of S21 and NF are respectively 1.1 dB and 0.8 dB in the whole frequency band. It is noteworthy that the gain and NF of SiGe LNAs under zero-bias mode suffer enhanced degradation compared with those under normal bias supply. The key influence factors are discussed based on the correlation of the SiGe device and the LNA circuit. Different process of the ionization damage and displacement damage under zero-bias and 2.5 V bias voltage supply contributed to the degradation difference. The underlying physical mechanisms are analyzed and investigated.

Application and optimal design of the bionic guide vane to improve the safety serve performances of the reactor coolant pump

  • Liu, Haoran;Wang, Xiaofang;Lu, Yeming;Yan, Yongqi;Zhao, Wei;Wu, Xiaocui;Zhang, Zhigang
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2491-2509
    • /
    • 2022
  • As an important device in the nuclear island, the nuclear coolant pump can continuously provide power for medium circulation. The vane is one of the stationary parts in the nuclear coolant pump, which is installed between the impeller and the casing. The shape of the vane plays a significant role in the pump's overall performance and stability which are the important indicators during the safety serve process. Hence, the bionic concept is firstly applied into the design process of the vane to improve the performance of the nuclear coolant pump. Taking the scaled high-performance hydraulic model (on a scale of 1:2.5) of the coolant pump as the reference, a united bionic design approach is proposed for the unique structure of the guide vane of the nuclear coolant pump. Then, a new optimization design platform is established to output the optimal bionic vane. Finally, the comparative results and the corresponding mechanism are analyzed. The conclusions can be gotten as: (1) four parameters are introduced to configure the shape of the bionic blade, the significance of each parameter is herein demonstrated; (2) the optimal bionic vane is successfully obtained by the optimization design platform, the efficiency performance and the head performance of which can be improved by 1.6% and 1.27% respectively; (3) when compared to the original vane, the optimized bionic vane can improve the inner flow characteristics, namely, it can reduce the flow loss and decrease the pressure pulsation amplitude; (4) through the mechanism analysis, it can be found out that the bionic structure can induce the spanwise velocity and the vortices, which can reduce drag and suppress the boundary layer separation.

Two-dimensional measurements of the ELM filament using a multi-channel electrical probe array with high time resolution at the far SOL region in the KSTAR

  • Hong, Young-Hun;Kim, Kwan-Yong;Kim, Ju-Ho;Son, Soo-Hyun;Lee, Hyung-Ho;Eo, Hyun-Dong;Kim, Min-Seok;Hong, Suk-Ho;Chung, Chin-Wook
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3717-3723
    • /
    • 2022
  • For the first time, two-dimensional temporal behavior of the edge localized mode (ELM) filament is measured in the edge tokamak plasma with a multi-channel electrical probe array (MCEP). MCEP, which has 16 floating probes (4 × 4), is mounted at the far scrape-off layer (SOL) region in the KSTAR. An electron temperature and an ion flux are measured by sideband method (SBM), which can achieve two-dimensional measurements with high time resolution. Furthermore, temporal evolutions of the electron temperature and the ion flux are obtained during the ELM occurrence. In the H-mode period, short spikes from ELM bursts are observed in measured plasma parameters, and the trend is similar to that of typical Hα signal. Interestingly, when blob-like ELM filaments crash the probe, the heat flux is significantly higher in a local region of the probe array. The results show that our probe array using the SBM can measure the ELM behavior and the plasma parameters without the effect of the stray current caused by the huge device. This study can provide valuable data needed to understand the interaction between the SOL plasma and the plasma facing components (PFCs).

Wire Arc Additive Manufacturing(WAAM)에서 적층 비드(Bead) 형상 정확도 및 기계적 특성 향상을 위한 가변 가압장치 개발 (Development of Variable Rolling Pressure Device for Bead-Shape Accuracy and Mechanical Property Enhancement in WAAM)

  • 황예한;이춘만;김동현
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.66-71
    • /
    • 2022
  • Metal additive manufacturing (AM) has revolutionized several manufacturing industries. AM can generate large-scale metal components and produce complex geometries close to net-shapes. WAAM is an AM technology that has garnered considerable interest among industries owing to its economics and relatively high deposition rates. However, the heat accumulation in the weld bead during deposition triggers distortion and residual stress. To address these problems, various methods of interpass pressure rolling systems have been suggested in recent research. In addition, combining the rolling and WAAM processes can mitigate residual stresses. The constant-pressure rolling of the interlayer also affect the microstructure. The coarse microstructure of the as-deposited sample was altered to finer equiaxed grains via these methods. However, the bead-shape accuracy of the interlayer constant-pressure method does not consider the heat accumulation in each layer. Therefore, this study develops an interpass variable pressure rolling system that considers the heat accumulation of each layer. The interpass variable pressure rolling system comprises deposition, detection, pressure, and transport units. Finally, verification tests are performed on the interpass variable-pressure rolling system (at 500 kg) with the WAAM process, and the obtained results are discussed.

Analytical-numerical formula for estimating the characteristics of a cylindrical NaI(Tl) gamma-ray detector with a side-through hole

  • Thabet, Abouzeid A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3795-3802
    • /
    • 2022
  • NaI(Tl) scintillation materials are considered to be one of many materials that are used exclusively for γ-ray detection and spectroscopy. The gamma-ray spectrometer is not an easy-to-use device, and the accuracy of the numerical values must be carefully checked based on the rules of the calibration technique. Therefore, accurate information about the detection system and its effectiveness is of greater importance. The purpose of this study is to estimate, using an analytical-numerical formula (ANF), the purely geometric solid angle, geometric efficiency, and total efficiency of a cylindrical NaI(Tl) γ-ray detector with a side-through hole. This type of detector is ideal for scanning fuel rods and pipelines, as well as for performing radio-immunoassays. The study included the calculation of the complex solid angle, in combination with the use of various points like gamma sources, located axially and non-axially inside the through detector side hole, which can be applied in a hypothetical method for calibrating the facility. An extended γ-ray energy range, the detector, source dimensions, "source-to-detector" geometry inside the side-through hole, path lengths of γ-quanta photons crossing the facility, besides the photon average path length inside the detector medium itself, were studied and considered. This study is very important for an expanded future article where the radioactive point source can be replaced by a volume source located inside the side-trough hole of the detector, or by a radioactive pipeline passing through the well. The results provide a good and useful approach to a new generation of detectors that can be used for low-level radiation that needs to be measured efficiently.

인공지능을 활용한 초음파영상진단장치에서 초음파 팬텀 영상을 이용한 정도관리의 정량적 평가방법 연구 (A Study on the Quantitative Evaluation Method of Quality Control using Ultrasound Phantom in Ultrasound Imaging System based on Artificial Intelligence)

  • 임연진;황호성;김동현;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.390-398
    • /
    • 2022
  • Ultrasound examination using ultrasound equipment is an ultrasound device that images human organs using sound waves and is used in various areas such as diagnosis, follow-up, and treatment of diseases. However, if the quality of ultrasound equipment is not guaranteed, the possibility of misdiagnosis increases, and the diagnosis rate decreases. Accordingly, The Korean Society of Radiology and Korea society of Ultrasound in Medicine presented guidelines for quality management of ultrasound equipment using ATS-539 phantom. The DenseNet201 classification algorithm shows 99.25% accuracy and 5.17% loss in the Dead Zone, 97.52% loss in Axial/Lateral Resolution, 96.98% accuracy and 20.64% loss in Sensitivity, 93.44% accuracy and 22.07% loss in the Gray scale and Dynamic Range. As a result, it is the best and is judged to be an algorithm that can be used for quantitative evaluation. Through this study, it can be seen that if quantitative evaluation using artificial intelligence is conducted in the qualitative evaluation item of ultrasonic equipment, the reliability of ultrasonic equipment can be increased with high accuracy.