• Title/Summary/Keyword: Device reliability

Search Result 1,227, Processing Time 0.029 seconds

Design of a Torque Application Device in Test Rig for a Wind Turbine Gearbox (풍력발전기용 증속기 시험 장비의 토크 인가 장치 설계)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Nam, Yong-Yun;Oh, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.507-515
    • /
    • 2015
  • This study was conducted to develop and verify a torque application device for use in a mechanical power-circulation test rig for 5.5 MW wind turbine gearboxes. The design and analysis of the torque application device was conducted. In addition, the torsional stiffness of the test rig was calculated using the rotational angle measurements for each of the components. The calculated stiffness of the test rig was $231.13kN{\cdot}m/rad$ for a clockwise torque application. The rated torque can be applied when the stiffness of the gearbox is greater than $1,064,400kN{\cdot}m/rad$ for a clockwise torque application. Because of the limited rotational angle of the test rig, the potential application of the rated torque is determined according to the torsional stiffness of the test gearbox.

A Study on the Validity and Test-Retest Reliability of the Measurement of the Craniovertebral Angle of the Smart Phone Application 'Angles Video Goniometer'

  • Hyeon-Seong Joo;Byeong-Soo Kim;Myung-Mo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.454-463
    • /
    • 2022
  • Objective: The purpose of this study was to compare concurrent validity and test-retest reliability based on Craniovertebral angle of 'Angles video goniometer', a smart phone application for convenient range of motion measurement, and 'Image J', an analysis software with high reliability and validity. This was conducted to find out whether 'Angle video goniometer' can be used clinically. Design: Cross-sectional study Methods: Fifty subjects were imaged laterally, and the angle of the head and spine was measured using Image J and the Angles video goniometer, respectively, in a resting posture and a chin in posture. The level of concurrent validity between the two measurement methods and the level of inter-rater reliability and intra-rater reliability were analyzed. Results: For forty participants, the concurrent validity between Image J and Angles video goniometer showed very high validity with ICC of 0.997(0.995~0.999) and 0.994(0.994~0.998), CVME% 0.71~0.72%, SEM% 0.31~0.34, MDC% 0.86~0.94. The test-retest intra-rater reliability showed very high reliability ICC 0.994(0.991~0.996), CVME% 0.71%, SEM% 0.31~0.43, MDC% 0.86~1.19%. The test-retest inter-rater showed very high reliability ICC 0.995(0.992~0.997), CVME% 0.71%, SEM% 0.43~0.59%, MDC% 1.20~1.62% Conclusions: Angles video goniometer', a smartphone application, is a device with very high reliability and validity for craniovertebral angle measurement in healthy adults, and it is a device that can be easily used in clinical practice.

A Case Study on the Reliability Assessment of Stockpile Ammunition (저장탄약의 품목별 신뢰도평가 사례 연구)

  • Yoon, Keun-Sig;Lee, Jong-Chan
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.259-269
    • /
    • 2012
  • Purpose: The purpose of this study was to find out that the statistical method of stockpile reliability of ammunition by items can be applied to the reliability assessment of stockpile ammunition. Methods: We reviewed the statistical method of stockpile reliability of ammunition by items and verified the possibility of its application by case study. Results: We found that the statistical method of stockpile reliability of ammunition by items is very useful and effective to present the reliability of ammunition based on each item and to predict the change of the reliability in the future. The reliability of proximity fuse was about 94.5% and was influenced by manufacture's year and the difference between lot and lot more than storage period. Conclusion: The statistical method of stockpile reliability of ammunition by items can be applied to the reliability assessment of various stockpile ammunitions such as ammunition for mortar and canon.

Reliability Evaluation of an Oil Cooler for a High-Precision Machining Center

  • Lee, Seung-Woo;Han, Seung-Woo;Lee, Hu-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.50-53
    • /
    • 2007
  • Improving the reliability or long-term dependability of a system requires a different approach from the previous emphasis on short-term concerns. The purpose of this paper is to present a reliability evaluation method for an oil cooler intended for high-precision machining centers. The oil cooler system in question is a cooling device that minimizes the deformation caused from the heat generated by driving devices. This system is used for machine tools and semiconductor equipment. We predicted the reliability of the system based on the failure rate database and conducted the reliability test using a test-bed to evaluate the life of the oil cooler. The results provided an indication of the reliability of the system in terms of the failure rate and the MTBF of the oil cooler system and its components, as well as a distribution of the failure mode. These results will help increase the reliability of oil cooler systems. The evaluation method can also be used to determine the reliability of other machinery products.

A Study on Reliability-driven Device Placement Using Simulated Annealing Algorithm (시뮬레이티드 어닐링을 이용한 신뢰도 최적 소자배치 연구)

  • Kim, Joo-Nyun;Kim, Bo-Gwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.42-49
    • /
    • 2007
  • This paper introduces a study on reliability-driven device placement using simulated annealing algorithm which can be applicable to MCM or electronic systems embedded in a spacecraft running at thermal conduction environment. Reliability of the unit's has been predicted with the devices' junction temperatures calculated from FDM solver and optimized by simulated annealing algorithm. Simulated annealing in this paper adopts swapping devices method as a perturbation. This paper describes and compares the optimization simulation results with respect to two objective functions: minimization of failure rate and minimization of average junction temperature. Annealing temperature variation simulation case and equilibrium coefficient variation simulation case are also presented at the two respective objective functions. This paper proposes a new approach for reliability optimization of MCM and electronic systems considering those simulation results.

Calculation of Sample Size for Guided Missile Considering Test Method and Reliability Growth (유도무기 시험평가 방법과 신뢰성 성장을 고려한 시험 수량 산출)

  • Lee, Youn-ho;Kim, Jae-hwang;Lee, Kye-shin;Lee, Jong-sin;Lee, Myoung-jin;Kim, Doo-hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.844-852
    • /
    • 2017
  • Since guided weapon is high-cost and one-shot device which is non-reusable, it requires a lot of resources to prove required accuracy as a part of reliability demonstration. Once a test for proving accuracy rate of guided missile fails, it causes an additional cost and delay of schedule. This study introduces an equation for proper sample size and plan for guided-missile accuracy rate test in order to minimize the risk of test failure. Proper sample size for the test is derived by considering the reliability growth. Furthermore, each task for accuracy rate test is defined according to the development step. Therefore, this study can contribute to reduce sample size for accuracy rate test in order to meet the reliability requirement and assure transparency in the test process.

Reliability Evaluation Method of Software for Electronic Medical Devices (전자의료기기용 소프트웨어의 신뢰성 평가 방법)

  • Park, Soon-Ock;Yang, Bae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.758-767
    • /
    • 2007
  • Today, medical devices is making great progress in type of the electronic medical device controlled by embedded software. So, the quality of electronic medical devices is dependant on the quality of embedded medical software. Especially, considering that medical devices closely connected to human life, we think the study about reliability of medical devices will be needed in the quality of programmable electronic medical devices. In this thesis, we constructed the reliability evaluation method based on ISO/IEC 9126 and ISO/IEC 12119, and developed the system that can applicate FMEA method, the one of the reliability evaluation method.

  • PDF

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Reliability assesment of tilting train using Fault Diagnosis analysis device (고장진단분석장치를 이용한 틸팅열차 신뢰성 평가 연구)

  • Han, Seong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1203_1204
    • /
    • 2009
  • Korean Tilting trains have tested on conventional lines since the beginning of 2007 for evaluating its reliability. We achieved some major performance tests which are the maximum operation speed 180km/h test and the maximum curves increasing speed with tilting operation test. In order to analysis reliability data of tilting train, we have used the special data aquisition system which consists of monitor, sensors and depot computer etc. As a results of calculation, until now we realized that the reliability are getting more increasing than starting point of running test.

  • PDF

Analysis of Load Input to Vehicle Body Due to Diversification of Environment of Towing Device (견인 장치 사용 환경 다양화에 따른 차체 입력하중 분석)

  • Choi, Jaesung
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.40-48
    • /
    • 2018
  • Purpose: This research is to develop Trailer Durability Test of towing device, in order to cover usage conditions of bike type as well as general type trailer. With the diversification of leisure activities, the population that enjoys various sports and leisure has increased rapidly, and the number of vehicles equipped with camping trailers and bike carriers is also increasing steadily. The purpose of this study is to develop a durable vehicle that has no problem in various customer conditions. Methods: We measured the input load under various conditions of the user by attaching load cell to the body fixing part and towing ball of the towing device. The load in various modes was measured, and the difference between the trailer and the bike carrier type was compared and analyzed. Results: Due to the difference in fixing method and weight between the two types, the trailer has a large longitudinal force and the bike type has a large vertical force. Therefore, it is necessary to durability test method capable of satisfying all longitudinal force and vertical force. Conclusion: We improved the durability test of the towing device by changing the test surface. The new mode has made it possible to shorten the durability test schedule by increasing test efficiency.