• Title/Summary/Keyword: Device performance

Search Result 5,965, Processing Time 0.035 seconds

Two-Stage Surge Protection Device with Varistor and LC Filter. (바리스터와 LC필터를 사용한 2단 서지보호장치)

  • Lee, B.H.;Kim, J.H.;Lee, K.O.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.279-281
    • /
    • 1996
  • This paper deals with the two stage surge protection device by using varistor and LC low pass filter. Recently varistor alone has been used with overvoltage protection devices for the AC power mains and has same problems associated with high remnant voltage and noise. In this work, in order to improve the cutoff performance of surge protection device, the lightning surge protection device having two stage hybrid circuit for an AC single phase mains was designed and fabricated. Operation characteristics and surge clamping performance of the surge protection device in an $8/20{\mu}s$ surge current are investigated. As a consequence, it is found that the proposed two stage surge protective device for AC power mains has a variety of advantages such as a smaller clamping voltage, high frequency noise reduction and large clamping capacity.

  • PDF

Novel Host materials for Phosphorescent OLEDs with long lifetime

  • Kim, Young-Hoon;Yu, Eun-Sun;Kim, Nam-Soo;Jung, Sung-Hyun;Kim, Hyung-Sun;Lee, Ho-Jae;Kang, Eui-Su;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.549-552
    • /
    • 2008
  • We have developed a novel bipolar host material with both electron and hole transporting characteristics. Since CGH(Cheil Green Host) has some electron transporting characteristics, it shows increased luminance efficiency in device including TCTA and without HBL(hole blocking layer:BAlq). Maximum power efficency of CGH was 27.4lm/W at the device structure ITO/DNTPD(60)/NPB(20)/TCTA(10)/EML(30)/Alq3(20)/LIF(1)/Al. We measured device performance again without HBL. The result of CGH showing 26.0lm/W is outstanding compared to that of CBP showing 19.1lm/W without holeblocking layer. We also measured lifetime and found to be 205hr at 3000nit, that is significant result compared to the life time of CBP device showing 82hr. CGH shows high device performance with holeblocking layer. Moreover, it shows better device performance and life time than those of CBP without holeblocking.

  • PDF

Inter-clustering Cooperative Relay Selection Schemes for 5G Device-to-device Communication Networks

  • Nasaruddin, Nasaruddin;Yunida, Yunida;Adriman, Ramzi
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • The ongoing adoption of 5G will increase the data traffic, throughput, multimedia services, and power consumption for future wireless applications and services, including sensor and mobile networks. Multipath fading on wireless channels also reduces the system performance and increases energy consumption. To address these issues, device-to-device (D2D) and cooperative communications have been proposed. In this study, we propose two inter-clustering models using the relay selection method to improve system performance and increase energy efficiency in cooperative D2D networks. We develop two inter-clustering models and present their respective algorithms. Subsequently, we run a computer simulation to evaluate each model's outage probability (OP) performance, throughput, and energy efficiency. The simulation results show that inter-clustering model II has the lowest OP, highest throughput, and highest energy efficiency compared with inter-clustering model I and the conventional inter-clustering-based multirelay method. These results demonstrate that inter-clustering model II is well-suited for use in 5G overlay D2D and cellular communications.

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

New Material Architecture and Its Process Integration for a-Si TFT Array Manufacturing

  • Song, Jean-Ho;Park, Hong-Sick;Kim, Sang-Gab;Cho, Hong-Je;Jeong, Chang-Oh;Kang, Sung-Chul;Kim, Chi-Woo;Chung, Kyu-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.552-555
    • /
    • 2002
  • In order to achieve higher performance and low cost a-Si TFT-LCD panel, new material architecture and its process integration for a-Si TFT array manufacturing method were developed. Material combination of low resistant dry-etchable metal and new pixel electrode under currently adopted 4 mask process made it possible to get more-simplified manufacturing method and better device performance for the a-Si TFT-LCD application. Proposed 4 mask process architecture with optimized wet etchants and dry etching process was applicable to various devices such as notebook, monitor and TV.

  • PDF

Some Device Design Considerations to Enhance the Performance of DG-MOSFETs

  • Mohapatra, S.K.;Pradhan, K.P.;Sahu, P.K.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.291-294
    • /
    • 2013
  • When subjected to a change in dimensions, the device performance decreases. Multi-gate SOI devices, viz. the Double Gate MOSFET (DG-MOSFET), are expected to make inroads into integrated circuit applications previously dominated exclusively by planar MOSFETs. The primary focus of attention is how channel engineering (i.e. Graded Channel (GC)) and gate engineering (i.e. Dual Insulator (DI)) as gate oxide) creates an effect on the device performance, specifically, leakage current ($I_{off}$), on current ($I_{on}$), and DIBL. This study examines the performance of the devices, by virtue of a simulation analysis, in conjunction with N-channel DG-MOSFETs. The important parameters for improvement in circuit speed and power consumption are discussed. From the analysis, DG-DI MOSFET is the most suitable candidate for high speed switching application, simultaneously providing better performance as an amplifier.

A Study on the Effect of Device Degradation Induced by Hot-Carrier to Analog Circuits (Hot-Carrier에 의한 소자 외쇠화가 아날로그 회로에 미치는 영향)

  • 류동렬;박종태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.91-99
    • /
    • 1994
  • We used CMOS current mirror and differenial amplifier to find out how the degradation of each devices in circuit affect total circuit performance. The devices in circuit wer degraded by hot-carrier generated during circuit operation and total circuit performance were changed according to the change of each device parameters. To examine the circuit performance phenomena of current mirror, we analyzed three diffent kinds of current mirrors and made correlation model between circuit performance and stressed device parameters, and compare hot-carrier immunity of these circuits. Also we analyzed how the performance of differential amplifier degraded from the initial value after hot-carrier stress incircuit operations.

  • PDF

Device Performance Analysis Method for Hybrid Rendering (하이브리드 렌더링을 위한 단말기 성능분석 방법)

  • Kim, Hak-Ran;Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.771-778
    • /
    • 2008
  • A Device performance analyzing method for appropriate level in hybrid rendering model is suggested. In recent research, we proposed a hybrid rendering model which is applying a proper shading method to each of polygons consisting of an object. The number of polygon for Gouraud shading and that for flat shading should be considered according to a current device performance and system environments. Therefore, this paper suggests the method to calculate automatically a proper resolution of a mesh of object and a proper level of mixture between Gouraud and a flat shading, considering a current device performance and a preference of end-user. The rendering model is so simple that it can be an efficient replacement to reduce a real-time rendering time since it provides automatically multi-level of rendering resolution to an executing environments. Moreover, it can be adopted in real-time adaptive service for 3D graphic contents like a graphic game under various device environments.

  • PDF

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Development of a Small Jet Engine Performance Test Device by Applying the Real-time Gas Turbine Engine Simulator (실시간 가스터빈 엔진 시뮬레이터를 적용한 소형 제트엔진 성능시험장치 개발)

  • Kho, Seonghee;Kong, Changduk;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.42-49
    • /
    • 2014
  • Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded small jet engine performance test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing micro jet engine performance test device that was previously developed by authors. This newly developed multi-purpose small jet engine performance test device is expected to be used for various educational and research purposes.