• Title/Summary/Keyword: Device performance

Search Result 5,965, Processing Time 0.038 seconds

A Protective Effectiveness Measure for Distribution Systems (배전계통 보호시스템의 보호능력의 평가방법)

  • 현승호;이승재;임성일;최인선;신재항;최면송
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2004
  • This paper suggests a novel evaluation scheme of protective effectiveness in distribution systems. The adequacy of every parameter in a protective device is evaluated for the setting or correction rules. Then, the protective effectiveness of a device, device-wise effectiveness, is obtained by the combination of the parametric evaluation results. The coordination-wise effectiveness between devices can be calculated by evaluating the parameters which contribute the performance of coordination. The protective effectiveness of the whole system can be obtained by combining the device-wise and coordination-wise effectiveness values. The rules, in this paper, are categorized into three groups; rules for single parameter, rules for coordination between parameters, and rules for coordination between protective devices to form a hierarchical calculation model. The proposed method is applied to a typical distribution network to show its effectiveness.

Kinestatic Control using a Compliant Device by Fuzzy Logic (퍼지 논리에 의한 순응기구의 위치/힘 동시제어)

  • Seo, Jeong-Wook;Choi, Yong-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.917-922
    • /
    • 2004
  • As the tasks of robots become more diverse, some complicated tasks have come to require force and position hybrid control. A compliant device can be used to control force and position simultaneously by separating the twist of the robot's end effector from the twist of compliance and freedom by using stiffness mapping of the compliant device. The development of a fuzzy gain scheduling scheme of control for a robot with a compliant device is described in this paper. Fuzzy rules and reasoning are performed on-line to determine the gain of twists based on wrench error and twist error and twist of compliance and twist of freedom ratio. Simulation results demonstrate that better control performance can be achieved in comparison with constant gain control.

  • PDF

Dynamic Braille Display Using Dielectric Elastomer (고분자유전체를 이용한 동적 점자출력기)

  • 최혁렬;이상원;정광목;이성일;최후곤;전재욱;남재도
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.592-599
    • /
    • 2003
  • As one of the Principal modalities of human sensation, tactile feel is prerequisite for building wide variety of applications such as telemanipulation, virtual reality and medical engineering. A dynamic Braille display device based on a polymer actuator is presented. The actuator, often called artificial muscle actuator has advantageous features over the existing methods in terms of intrinsic softness, ease of fabrication, cost-effectiveness and miniaturization. The principles of actuation with dielectric elastomer is introduced, and necessary considerations on the design of a tactile display device are discussed. The design of the device is described in detail including the fabrication process and driving electronics. Also, preliminary results of experiments are given to evaluate its performance.

A Study on Finger-click Recognition of a Wearable Input Device using Inertial Sensors (관성 센서를 이용한 착용형 공간 입력장치의 클릭 인식에 관한 연구)

  • Soh, Byung-Seok;Kim, Yoon-Sang;Lee, Sang-Goog
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.120-122
    • /
    • 2004
  • Wearable input device that can make free-space typewriting possible is introduced. We named this device as $SCURRY^{TM}$. To measure the angular velocity of hand and the acceleration rates at the ends of fingers, we buried MEMS inertial sensors in this keyboard. We processed sensor signals to get the information on hand movement and finger-click motion. With this signal processing, apparent finger movements were depicted over the virtual keyboard shown on output device of a target computing system. In this paper, a finger-click recognition method is proposed to improve the recognition performance for finger clicking of $SCURRY^{TM}$. The proposed method is composed of three parts including feature extraction part, valid click part, and cross-talk avoidance part. The experiments were conducted to verify the effectiveness and efficiency of the proposed algorithms.

  • PDF

A Study on Three Degree-of-Freedom Fine Positioning Device Based on Electromagnetic Force (전자기력을 이용한 3 자유도 정밀 위치결정기구에 관한 연구)

  • 이기하;최기봉;박기환;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.199-207
    • /
    • 1998
  • This paper presents the design and the control of three degree-of-freedom(DOF) fine positioning device based on an electro-magnetic force. The device is designed by use of a magnetic circuit theory and it is capable of fine motion due to the electro-magnetic force. The device consists of permanent magnets, yokes and coils. The magnetic fluxes generated from the permanent magnets constitute magnetic paths through steel, whereas the coils are arranged into the gap between two surfaces of the yokes. Therefore, by supplying current to the coils, the coils are capable of some motions due to Lorentz forces. For the optimal design of the actuating system, the system parameters are defined and investigated under the given constraints. From the system modeling in small displacement, three decoupled equations of motion are obtained. To get better performance of the system, a PID controller is implemented. Experimental results are presented in terms of time response and accuracy.

  • PDF

Hand Exoskeleton with PWM Driving Method (초음파 모터 구동방식의 역감제시 기구)

  • Choe, Byeong-Hyeon;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.938-948
    • /
    • 2001
  • In this paper, we present an exoskeletal haptic device named SKK Hand Master. This device is directly driven linkages actuated with small ultrasonic motors. By adopting ultrasonic motors that have advantageous features useful for cybernetic actuators, a compact haptic device containing whole driving packages can be established without additional power transmissions such as tendons. Methods for measuring joint postures and joint torques are developed and a new control strategy called PWM/PS is proposed to overcome intrinsic disadvantages such as hysteresis. Issues regarding design and construction of the device are addressed and several results of experiments for the evaluations of performance are included.

Insect-mimicking Flapping Device Actuated by a Piezoceramic Actuator LIPCA (압전작동기 LIPCA로 구동하는 곤충 모방 날갯짓 기구)

  • Park, Hoon-Cheol;Moh, Syaifuddin;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.719-722
    • /
    • 2005
  • In this paper, we present out recent progress in the LIPCA (Lightweight Piezo-Composite Actuator) application for actuation of a flapping wing device. The flapping device uses linkage system that can amplify the actuation displacement of LIPCA. The feathering mechanism is also designed and implemented such that the wing can rotate during flapping. The natural flapping-frequency of the device was about 9 Hz, where the maximum flapping angle was achieved. The flapping test under 5 Hz to 15 Hz flapping frequency was performed to investigate the flapping performance by measuring the produced lift and thrust. Maximum lift and thrust were produced when the flapping device was actuated at about the natural flapping-frequency.

  • PDF

Verification for the design limit margin of the power device using the HALT reliability test

  • Chang, YuShin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.67-74
    • /
    • 2018
  • The verification for the design limit margin of the power device for the information communication and surveillance systems using HALT(Highly Accelerated Life Test) reliability test is described. The HALT reliability test performs with a step stress method which change condition until the marginal step in a design and development phase. The HALT test methods are the low temperature(cold) step stress test, the high temperature(hot) step stress test, the thermal shock cyclic stess test, and the high temperature destruct limit(hot DL) step stress test. The power device is checked the operating performance during the test. In this paper, the HALT was performed to find out the design limit margin of the power device.

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.

Use of Acellular Biologic Matrix Envelope for Cardiac Implantable Electronic Device Placement to Correct Migration into Submuscular Breast Implant Pocket

  • Peyton Terry;Kenneth Bilchick;Chris A. Campbell
    • Archives of Plastic Surgery
    • /
    • v.50 no.2
    • /
    • pp.156-159
    • /
    • 2023
  • Breast implants whether used for cosmetic or reconstructive purposes can be placed in pockets either above or below the pectoralis major muscle, depending on clinical circumstances such as subcutaneous tissue volume, history of radiation, and patient preference. Likewise, cardiac implantable electronic devices (CIEDs) can be placed above or below the pectoralis major muscle. When a patient has both devices, knowledge of the pocket location is important for procedural planning and for durability of device placement and performance. Here, we report a patient who previously failed subcutaneous CIED placement due to incision manipulation with prior threatened device exposure requiring plane change to subpectoral pocket. Her course was complicated by submuscular migration of the CIED into her breast implant periprosthetic pocket. With subcutaneous plane change being inadvisable due to patient noncompliance, soft tissue support of subpectoral CIED placement with an acellular biologic matrix (ABM) was performed. Similar to soft tissue support used for breast implants, submuscular CIED neo-pocket creation with ABM was performed with durable CIED device positioning confirmed at 9 months postprocedure.