• Title/Summary/Keyword: Development axis

Search Result 1,371, Processing Time 0.027 seconds

Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm (자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발)

  • Um, Chul;Kim, Byung-Hee;Choi, Young-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.

Structural Performance and CO2 Reduction Evaluation of the Ultra simple Wide-shaped section Beam-to-Column Weak Axis Connection (초간편 H형강 기둥-보 약축접합부의 구조성능 및 CO2 저감량 평가)

  • Kim, Sang-Seup;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.615-627
    • /
    • 2011
  • There have been few researches on the connection technology for steel structures, so the research outputs and the outcome of the technology development are still insufficient. The bracket-type connection should be improved for efficient constructability and $CO_2$ reduction. It should be replaced by a new type of weak-axis connection that has better structural performance and less $CO_2$ emission. Since the structural performance and safety of the new type of weak-axis connection must first be verified, however, a study on $CO_2$ reduction will be conducted. Therefore, this study looked into the structural performance of the bracket-type details, standard details, and ultra-simple details. It evaluated the requirements for connection materials and $CO_2$ emission. It was found that the ultra-simple weak-axis connection has thebest structural performance and the least $CO_2$ emissions, so it is deemed capable of replacing the bracket-type weak-axis connection.

Verification of KAUSAT-2 Satellite Attitude Control Algorithm Using KAUSatSIM Simulator (KAUSatSIM을 이용한 한누리 2호 자세제어 알고리즘 검증)

  • Na, Hee-Seung;Lee, Byung-Hoon;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.514-523
    • /
    • 2008
  • This paper presents a single-axis simulator developed to verify the attitude control algorithm of KAUSAT-2 satellite. Named KAUSatSIM, the simulator is composed of a single-axis rotation table using an air-bearing that simulates a frictionless environment, as well as sensors and momentum wheel that was used on KAUSAT-2. The simulator can be utilized for verification of KAUSAT-2 attitude control algorithm, development of new algorithms, and verification of performance. Tests were performed on the single-axis rotation simulator using the momentum wheel in order to verify the attitude control algorithm of KAUSAT-2. Satisfactory test results were obtained by designing a wheel controller that employs the proportional-derivative control method. In addition, a propulsion system was added and tested for development of a new satellite attitude control algorithm.

Development of a Force Measurement and Communication System for the Force Measuring System in Industrial Robots (산업용 로봇의 힘측정 시스템을 위한 힘측정 및 통신장치 개발)

  • Lee, Kyeong-Jun;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • This paper describes the design of a force measurement and communication system for the force measuring system in industrial robots. The force measurement and communication system is composed of a multi-axis force sensor and a controller for measuring the forces (x-direction force, y-direction force and z-direction force) and sending the measured forces to the robot's controller (PLC: Programmable Logic Controller). In this paper, the force measurement and communication system was designed and fabricated by using a DSP (Digital Signal Processor). An environment test and a grinding and deburring test using an industrial robot with the force measurement and communication system with three-axis force sensor were carried out to characterize the system. The tests showed that the system could safely measure the forces from the three-axis force sensor and send the measured forces to the industrial robot's controller while the grinding and deburring test was performed. Thus, it is thought that the fabricated force measurement and communication system could be used for controlling the force for an industrial robot's grinding and deburring.

Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter - (농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 -)

  • Yu, Ji-Hoon;Choi, Young-Kyun;Lee, Kyu-Cheol;Kim, Young-Joo;Ryu, Young-Sun;Ryuh, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.

Development and Experimental Verification of an Error Compensation Model for a Five-axis Machine Tool using an Error Matrix (오차행렬을 이용한 5축 공작기계의 오차보정모델 생성 및 실험적 검증)

  • Kweon, Sung Hwan;Lee, Dong Mok;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.507-512
    • /
    • 2013
  • This paper proposes a new model to compensate for errors of a five-axis machine tool. A matrix with error components, that is, an error matrix, is separated from the error synthesis model of a five-axis machine tool. Based on the kinematics and inversion of the error matrix which can be obtained not by using a numerical method, an error compensation model is established and used to calculate compensation values of joint variables. The proposed compensation model does not need numerical methods to find the compensation values from the error compensation model, which includes nonlinear equations. An experiment using a double ball-bar is implemented to verify the proposed model.

Development of Force Measuring System using Three-axis Force Sensor for Measuring Two-finger Force (3축 힘센서를 이용한 두 손가락 힘측정장치 개발)

  • Kim, Hyeon-Min;Yoon, Jong-Won;Shin, Hee-Suk;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.876-882
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers (thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). But, at present, the grasping finger force of two-finger can't be accurately measured, because there is not a proper finger-force measuring system. Therefore, doctors can't correctly judge the rehabilitating extent. So, the finger-force measuring system which can measure the grasping force of two-finger must be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the pressing force was developed. The three-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (Digital Signal Processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods.

Development of Finger-force Measuring System with Six-axis Force/moment Sensor for Measuring a Spherical-object Grasping Force (6 축 힘/모멘트센서를 이용한 구물체 잡기 손가락 힘측정장치 개발)

  • Kim, Hyeon-Min;Yoon, Joung-Won;Shin, Hee-Suk;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.37-45
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis of their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by grasping a spherical object. At present, the used object in hospital is only a spherical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the spherical object measuring system which can measure the force of their fingers should be developed. In this paper, the finger-force measuring system with a six-axis force/moment sensor which can measure the spherical-object grasping force is developed. The six-axis force/moment sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (digital signal processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the average force of men was about 120N.

Development of Electronic Compass Using 2-Axis Micro Fluxgate Sensor (2축 마이크로 플럭스게이트 센서 제작을 통한 전자 나침반 개발)

  • 박해석;심동식;나경원;황준식;최상언
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.418-423
    • /
    • 2003
  • This paper describes an electronic compass using micromachined X- and Y-axis micro fluxgate sensors which were perpendicularly aligned each other to measure X- and Y-axis magnetic fields respectively. The fluxgate sensor was composed of rectangular-ring shaped magnetic core and solenoid excitation(49 turns) and pick-up(46 turns) coils. Excitation and pick-up coil patterns which were formed opposite to each other wound the magnetic core alternatively to improve the sensitivity and to excite the magnetic core in an optimal condition with reduced excitation current. The magnetic core has DC effective permeability of ~1000 and coercive field of ~0.1 Oe. The magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. To decrease the difference of induced second harmonic voltages from X- and Y-axis, excitation condition of 2.8 $V_{P-P}$ and 1.2 MHz square wave was selected. Excellent linear response over the range of -100 $\mu$T to +100 $\mu$T was obtained with 210 V/T sensitivity. The size of each micro fluxgate sensor excluding pad region was about 2.6${\times}$1.7 $mm^2$ and the power consumption was estimated to be 14 mW.W.

The Characteristics of the Particle Position Along an Optical Axis in Particle Holography (입자 홀로그래피에서 입자의 광축 방향 위치 특성에 관한 연구)

  • Choo Yeon-Jun;Kang Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.287-297
    • /
    • 2006
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. One of inherent limitations of particle holography is the very long depth of field of particle images, which causes considerable difficulty in the determination of particle positions in the optical axis. In this study, we introduced three auto-focusing parameters corresponding to the size of particles, namely, Correlation Coefficient, Sharpness Index, and Depth Intensity to determine the focal plane of a particle along the optical axis. To investigate the suitability of the above parameters, the plane image of dot array screens containing different size of dots was recorded by diffused illumination holography and the positions of each dot in the optical axis were evaluated. In addition, the effect of particle position from the holographic film was examined by changing the distance of the screen from the holographic film. All measurement results verified that the evaluated positions using suggested auto-focusing parameters remain within acceptable range of errors. These research results may provide fundamental information for the development of the holographic velocimetry system based on the automatic image processing.