Background: Essential oils are of great interest for their analgesic and anti-inflammatory properties. We aimed to study the content of the essential oil of the Origanum vulgare of the Armenian highlands (OVA) in different periods of vegetation and to investigate its antinociceptive and anti-inflammatory effects in mice (in vivo) and cytotoxic action in cultured cells (in vitro). OVA essential oil was extracted from fresh plant material by hydro-distillation. Methods: For OVA essential oil contents determination the gas chromatography-mass spectrometry method was used. Formalin and hot plate tests and analysis of cell viability using the methyl-thiazolyl-tetrazolium (MTT) assay were used. Results: The maximal content of β-caryophyllene and β-caryophyllene oxide in OVA essential oil was revealed in the period of blossoming (8.18% and 13.36%, correspondently). In the formalin test, 4% OVA essential oil solution (3.5 mg/mouse) exerts significant antinociceptive and anti-inflammatory effects (P = 0.003). MTT assay shows approximately 60% cytotoxicity in HeLa and Vero cells for 2.0 µL/mL OVA essential oil in media. Conclusions: The wild oregano herb of Armenian highlands, harvested in the blossoming period, may be considered as a valuable source for developing pain-relieving preparations.
Immersive contents is content that provides a realistic experience by maximizing the user's five senses, and includes virtual reality, augmented reality, and mixed reality. In order to provide a sense of reality to users in immersive content, it is necessary to provide realistic visual images, hearing, and touch. However, due to the rapid change in the environment for developing immersive content, experts in training human resources are having difficulties in designing the curriculum. In this study, we propose a series of educational courses that use drones to acquire and process real-world measurement data and apply the derived data to VR, AR, and MR to help experts in training immersive content develop talent. The design of training process composes through demand survey and analysis of companies, students, and local communities. This study can be a useful resource for education experts who want to train immersive contents manpower.
Research on what factors affect the success of the movie market is very important for reducing risks in related industries and developing the movie industry. In this study, in order to find out the degree of correlation of independent variables that affect movie performance, a survey was conducted on film experts using the AHP method and the importance of each measurement factor was evaluated. In addition, we hypothesized that factors derived from big data related to search portals and SNS will affect the success of movies due to the increase in the spread and use of smart phones. And a prediction model that reflects both the expert survey information and big data mentioned above was proposed. In order to check the accuracy of the prediction of the proposed model, it was confirmed that it was improved (10.5%) compared to the existing model as a result of verification with real data.Therefore, it is judged that the proposed model will be helpful in decision-making of film production companies and distributors.
The purpose of this study was to develop an instrument measuring mathematics anxiety suitable for Korean High school students. In order to achieve this study purpose, the study was conducted according to the procedure of setting components of mathematics anxiety, developing questions, and verifying validity and reliability. First, in order to set the components of mathematic anxiety, previous studies on mathematic anxiety. Through this, six factors of mathematic anxiety were derived. Next, new questions were developed for each of the six constituent factors. The 122 questions were revised and supplemented through two content validity tests, and the final instrument for mathematics anxiety consisted of 49 questions of 6 factors. Finally, to verify the validity and reliability of the measurement instrument for mathematics anxiety, a survey was conducted on 1,848 students from 16 universities in Seoul and the metropolitan area. Next, a validity analysis was conducted with the 1,645 responses, excluding students who answered that there was no mathematics anxiety. As a result of exploratory factor analysis, 15 out of 49 questions were removed. Six factors were named individual characteristics, pressure on achievement, abstraction in mathematics, teaching and learning style, parental attitudes, and cumulative mathematics subjects. As a result of confirmatory factor analysis, the model fit was found to be appropriate, and the convergence validity and discriminant validity were found to be good.
Gene expression data present the level of mRNA abundance of each gene, and analyses of gene expressions have provided key ideas for understanding the mechanism of diseases and developing new drugs and therapies. Nowadays high-throughput technologies such as DNA microarray and RNA-sequencing enabled the simultaneous measurement of thousands of gene expressions, giving rise to a characteristic of gene expression data known as high dimensionality. Due to the high-dimensionality, learning models to analyze gene expression data are prone to overfitting problems, and to solve this issue, dimension reduction or feature selection techniques are commonly used as a preprocessing step. In particular, we can remove irrelevant and redundant genes and identify important genes using gene selection methods in the preprocessing step. Various gene selection methods have been developed in the context of machine learning so far. In this paper, we intensively review recent works on gene selection methods using machine learning approaches. In addition, the underlying difficulties with current gene selection methods as well as future research directions are discussed.
Park, Kyu-Bag;Lee, Jeong-Woo;Lim, Dong-Wook;Kim, Ji-hun;Park, Jung-Rae;Ha, Seok-Jae
Design & Manufacturing
/
v.16
no.1
/
pp.55-61
/
2022
As meters become digital and smart, energy data such as electricity, gas, heat, and water can be accurately and efficiently measured with a smart meter, providing consumers with data on energy used, so that real-time demand response and energy management services can be utilized. Although it is developing from a simple metering system to a smart metering industry to create a high value-added industry fused with ICT, illegal counterfeiting of electronic meters is causing problems in intelligent crimes such as manipulation and hacking of SW. The meter not only allows forgery of the meter data through arbitrary manipulation of the SW, but also leaves a fatal error in the metering performance, so that the OIML requires the validation of the SW from the authorized institution. In order to solve this problem, a quantitative confirmation device was developed in order to eradicate the act of cheating the fuel oil quantity through encoder pulse operation and program modulation, etc. In order to prevent the act of deceiving the lubricator, a device capable of checking pulse forgery was developed, manufactured, and verified. In addition, the performance of the device was verified by conducting an experiment on the meter being used in the actual field. It is judged that the developed quantitative confirmation device can be applied to other flow meters other than lubricators, and in this case, accurate measurement can be induced.
This study aimed to derive pedagogical implications by comparing and analyzing how the concept of pi is taught in 10 different elementary mathematics textbooks, which are scheduled to be applied from 2023. We developed a textbook analysis framework by previous studies on the concept of pi and the teaching of pi, and analyzed in terms of three instructional elements (i.e. inferring conceptsof pi, understanding properties of pi, and applying relationships). We derived the need to emphasize various contexts for estimation of pi, presentation of problem situations that provide motivation to actually measure diameters and circumferences, providing an opportunity to explore the properties of measurement, and an experience the flexibility of selecting an approximate value of pi. Based on the above conclusions and pedagogical implications through the research results., we suggested ways to teach the concept of pi in elementary mathematics and improvement points for developing textbooks focusing on the context of introduction of pi and the use of technological tools.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1935-1941
/
2021
In order to develop an algorithm using deep learning, which has been recently applied to various fields, it is necessary to have rich, high-quality learning data. In this paper, we propose an acquisition system for biological signals that simultaneously collects bio-signal data such as optical videos, thermal videos, and voices, which are mainly used in developing deep learning algorithms and useful in derivation of information, and transmit them to the server. To increase the portability of the collector, it was made based on Raspberry Pi, and the collected data is transmitted to the server through the wireless Internet. To enable simultaneous data collection from multiple collectors, an ID for login was assigned to each subject, and this was reflected in the database to facilitate data management. By presenting an example of biological data collection for fatigue measurement, we prove the application of the proposed acquisition system.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2004.03a
/
pp.802-806
/
2004
For the protection of the local air quality and the global atmosphere, the emissions of trace species including nitric oxides (NO and NO$_2$) from gas turbines are regulated by local governments and by the International Civil Aviation Organization. In-situ measurements of such species are needed not only for the development of advanced low-emission combustion concepts but also for providing emissions data required for the sound assessment of the effects of the emissions on environment. We have been developing a laser absorption system that has a capability of simultaneous determination of NO and NO$_2$concentrations in the exhaust jets from aero gas turbines. A diode laser operating near 1.8 micrometer is used for the detection of NO while a separated visible tunable diode laser operating near 676 nanometers is used for NO$_2$. The sensitivities at elevated temperature conditions were determined for simulated gas mixtures heated up to 500K in a heated cell of a straight 0.5 m optical path. Sensitivity limits estimated as were 30 ppmv-m and 3.7 ppmv-m for NO and NO$_2$, respectively, at a typical exhaust gas temperature of 800K. Experiments using the simulated exhaust flows have proven that $CO_2$ and $H_2O$ vapor - both major combustion products - do not show any interference in the NO or NO$_2$ measurements. The measurement system has been applied to the NO/NO$_2$ measurements in NO and NO$_2$ doped real combustion gas jets issuing from a rectangular nozzle having 0.4 m optical path. The lower detection limits of the system were considerably decreased by using a multipass optical cell. A pair of off-axis parabola mirrors successfully suppressed the beam steering in the combustion gas jets by centralizing the fluctuating beam in sensor area of the detectors.
Jong-Hwa Yi;Seung-Hyeon Lee;Young-seok Kim;Chul Park
Journal of the Society of Disaster Information
/
v.18
no.4
/
pp.847-860
/
2022
Purpose: The purpose of this paper is to present a basic study on the development of a self-generation infrastructure for monitoring the health of harbour structures. Method: By developing a self-generation system and fiber optic sensors for seawater, the study provides basic research data on port structure health monitoring. Result: Through sunlight simulation analysis, 4-5 hours of sunlight can be secure in the domestic environment. Through this, the optical splitter (Introgate) that collects the raw data from the FBG sensor applicable to seawater, the MCU that calculates it, the IoT module with wireless communication functionality, the monitoring server and the supply system are set up. Conclusion: Monitoring port structures directly with fiber optic probes (FBG) and the possibility of using selfpowered systems were confirmed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.