• Title/Summary/Keyword: Detoxification.

Search Result 569, Processing Time 0.044 seconds

Quantitative Analys is of Flavonoids in Hovenia dulcis by Region Using UPLC (UPLC를 이용한 지역별 헛개나무(Hovenia dulcis) 플라보노이드의 정량분석)

  • Dong Hwan Lee;Hyun-Jun Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.100-100
    • /
    • 2022
  • Hovenia dulcis is a herbal plant, which belongs to the Rhamnaceae family and is a native of Japan, China and Korea. Its fruit stalk is called 'Jiguja' in Korea. It has been traditionally used as a medicinal plant in East Asia. It was reported to have detoxification effects on alcohol poisoning, and antioxidant, antidiabetic etc. Sample of 5 g was extracted with 50 mL of 70% EtOH. The supernatant was filtered by 0.45 ㎛ membrane filter before analysis. The UPLC system was performed on Waters alliance UPLC HSS T3 column (2.1 × 100 mm, 1.7 ㎛) with a UV detector. The gradient system was a binary eluent of 0.1% formic acid in water(A) and 0.1% formic acid in acetonitrile(B) with gradient conditions as follows: Initial, 10% B; 1 min, 10% B; 4 min, 20% B; 10 min, 25% B; 12 min, 30% B; 14 min, 90% B; 17 min, 90% B; flow rate of 0.2 mL/min. The samples were injected by 2 µL and were detected at UV 355 nm. As a result of analysis, chromatographic patterns appeared in two cases: samples analyzed for ampelopsin and myricetin, and samples analyzed for taxifolin and quercetin. Among the four compounds, the largest regional difference was found to be taxifolin.

  • PDF

Biological Constraints in Algal Biotechnology

  • Torzillo, Giuseppe;Pushparaj, Benjamin;Masojidek, Jiri;Vonshak, Avigad
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.338-348
    • /
    • 2003
  • In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale re-quired for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.

Comparison of Glucuronidating Activity of Two Human cDNAs, UDPGTh1 and UDPGTh2

  • Kim, Soon-Sun;Owens, Ida-S.;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.454-458
    • /
    • 1997
  • Two human liver UDP-glucuronosyltransferase cDNA clones, HLUG25 and UDPGTh2 were previously shown to encode isozymes active in the glucuronidation of hyodeoxycholic acid (HDCA) and certain estrogen derivatives (e.g., estriol and 3,4-catechol estrogens), respectively. in this study we have found that the UDPGTh2-encoded isoform (UDPGTh2) and HLUG25-encoded isoform (UDPGThl) have parallel aglycone specificities. When expressed in COS 1 cells, each isoform metabolized three types of dihydroxy- or trihydroxy-substituted ring structures, including the 3,4-catechol estrogen (4-hydroxyestrone), estriol, 17-epiestriol, and HDCA, but the UDPGTh2 isozyme was 100-fold more efficient than UDPGTh1. UDPGTh1 and UDPGTh2 were 86% identical overall (76 differences out of 528 amino acids), including 55 differences in the first 300 amino acids of the amino terminus, a domain which conferred the substrate specificity. The data indicated that a high level of conservation in the amino terminus was not required for the preservation of substrate selectivity. Analysis of glucuronidation activity encoded by UDPGTh1/UDPGTh2 chimeric cDNA constructed at their common restriction sites, Sac I (codon 297), Nco I (codon 385), and Hha I (codon 469), showed that nine amino acids between residues 385 and 469 were important for catalytic efficiency, suggesting that this region represented a domain which was critical for the catalysis but distinct from that responsible for aglycone-selection. These data indicate that UDPGTh2 is a primary isoform responsible for the detoxification of the bile salt intermediate as well as the active estrogen intermediates.

  • PDF

The Expression of Hsp70 and GST Genes in Mytilus coruscus Exposed to Water Temperature and Salinity (수온 및 염분 스트레스에 따 른 참담치, Mytilus coruscus에서 Hsp70 및 GST 유전자 발현에 대한 연구)

  • Kim, Chul Won;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.450-458
    • /
    • 2015
  • The heat shock proteins (Hsps), one of the most highly conserved groups of proteins, play crucial roles in protecting cells against environmental stressors, such as temperature, salinity, heavy metals and pathogenic bacteria. The glutathione S-transferases (GST) have important role in detoxification of oxidative damage, environmental chemicals and environmental stress. The purpose of this study is to investigate the gene expression of Hsp70 and GST on change of temperature and salinity in Mytilus coruscus. The M. coruscus was cultured in incubator of separate temperature and salinity (8, 20, $30^{\circ}C{\times}20$‰, 25‰, 30‰) for 28 days. Ten individuals in each group were selected after each 14 and 28 days exposure. Results that the expression of Hsp70 mRNA was no significant changed in M. coruscus exposed to temperature ($8^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$) and salinity (20‰, 25‰, 30‰) for 14 days. Whereas the expression of Hsp70 mRNA was increased in exposure to temperature $30^{\circ}C$ and salinity (20‰, 25‰, 30‰) for 28 days. The expression of GST mRNA was increased in exposure to temperature $30^{\circ}C$, salinity (25‰, 30‰) for 14 days and temperature ($8^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$), salinity (20‰, 25‰, 30‰) for 28 days. These results suggest that Hsp70 and GST were played roles in biomarker gene on the thermal and salinity stress.

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

Standardization of the Recipe for the Korean Traditional Drink "Omigalsu" (오미갈수(五味渴水)의 전통적 조리법 표준화 연구)

  • Han, Eun-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.3
    • /
    • pp.320-331
    • /
    • 2013
  • Omija, the major material of omigalsu, has liver protective and antioxidant effects, while mung bean has detoxification effects. A series of studies were conducted to standardize the traditional recipe for omigalsu to develop traditional functional drinks made from Omija extract and mung bean juice. Study 1 was designed to determine the optimal conditions for Omija extraction and mung bean juice. A higher water temperature and longer immersion time was associated with higher, free sugar and organic acid contents of omija extract; however, sensory evaluation revealed that the optimal extraction conditions for the highest acceptability, proper taste and red tone were $23^{\circ}C$ and 18 hrs of immersion. Conversely, the pH of the mung bean juice produced by varying the immersion time (5 hr, 11 hr, 17 hr) was found to be neutral, containing small levels of organic acid and free sugar, and showing a yellow tone. The results of the sensory evaluation also showed that the optimal conditions for taste, flavor and yellowness of mung bean juice was 5-hour-long immersion. Study 2 was designed to determine the optimum mixing ratio of omigalsu concentrate. Sensory evaluation revealed that the contents of sugar and total free sugar were highest when the mixing ratio among omija extract, mung bean juice and sugar was 1:1:20%, indicating that these conditions produced the most attractive color and highest overall acceptability. Study 3 was designed to determine the optimum dilution magnification for omigalsu. Sensory evaluation during summer revealed that the omigalsu produced by mixing 54 g of omigalsu concentrate into 200 cc water of $4^{\circ}C$ or $80^{\circ}C$ was most preferred, while during winter. Overall, the optimum dilution magnification for omigalsu was 4.7~5.4.

Transciptomic Analysis of Larval Fat Body of Plutella xylostella under Low Temperature (저온조건에서 배추좀나방(Plutella xylostella) 지방체 유전자 발현 변화)

  • Kim, Kwang-Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.296-306
    • /
    • 2019
  • BACKGROUND: Temperature is known to be the main factor affecting development, growth and reproduction of organisms and also a physical factor directly related to insect survival. Insects as ectothermal species should be responsive to climate changes for their survival and develop various survival strategies under the unfavorable temperature such as low temperature. The purpose of this study is to identify genes contributing to adaptation of low temperature. METHODS AND RESULTS: To identify genes contributing to adaptation of low temperature, the transcriptomic data were obtained from fat body in Plutella xyostella larvae via next generation sequencing. We identified structural proteins, heat shock proteins, antioxidant enzymes, detoxification proteins, and cryoprotectant mobilization and biosynthesis-related proteins. Genes encoding chitinase, cuticular protein, Hsp23, chytochrome protein, Glutathione S transferase, and phospholipase 2 were up-regulated under low temperature. Proteins related to energy metabolism such as UDP-glycosy ltransferase, trehalase and trehalose transporter were down-regulated. CONCLUSION: When insect pests were exposed to low temperature, changes in gene expression of fat body could provide some hints for understanding temperature adaptation strategies.

An Updated Pooled Analysis of Glutathione S-transferase Genotype Polymorphisms and Risk of Adult Gliomas

  • Yao, Lei;Ji, Guixiang;Gu, Aihua;Zhao, Peng;Liu, Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Objective: Glutathione S-transferases (GSTs) are multifunctional enzymes that play a crucial role in the detoxification of both the endogenous products of oxidative stress and exogenous carcinogens. Recent studies investigating the association between genetic polymorphisms in GSTs and the risk of adult brain tumors have reported conflicting results. The rationale of this pooled analysis was to determine whether the presence of a GST variant increases adult glioma susceptibility by combining data from multiple studies. Methods: In our meta-analysis, 12 studies were identified by a search of the MEDLINE, HIGHWIRE, SCIENCEDIRECT and EMBASE databases. Of those 12, 11 evaluated GSTM1, nine evaluated GSTT1 and seven evaluated GSTP1 Ile105Val. Between-study heterogeneity was assessed using ${\chi}^2$-based Q statistic and the $I^2$ statistic. Crude odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were used to estimate the association between GSTM1, GSTT1 and GSTP1 polymorphisms and the risk of adult gliomas. Results: The quantitative synthesis showed no significant evidence to indicate an association exists between the presence of a GSTM1, GSTT1 or GSTP1 Ile105Val haplotype polymorphism and the risk of adult gliomas (OR, 1.008, 1.246, 1.061 respectively; 95% CI, 0.901-1.129, 0.963-1.611, 0.653-1.724 respectively). Conclusions: Overall, this study did not suggest any strong relationship between GST variants or related enzyme polymorphisms and an increased risk of adult gliomas. Some caveats include absence of specific raw information on ethnic groups or smoking history on glioma cases in published articles; therefore, well-designed studies with a clear stratified analysis on potential confounding factors are needed to confirm these results.

Association Between GSTM1 Polymorphism and Nasopharyngeal Cancer Susceptibility: a Meta-analysis

  • Sun, Zhen-Feng;Zhang, Jia;Xu, Hong-Ming;Wang, Guo-Liang;Dong, Pin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5817-5821
    • /
    • 2012
  • Background/Aims: Glutathione S-transferase M1 (GSTM1) is a multifunctional enzyme that plays a critical role in the detoxification of varieties of carcinogenic metabolites. Many studies have been conducted to investigate the association between GSTM1 polymorphism and nasopharyngeal cancer (NPC) risk, but the findings among those studies are inconsistent. To assess this relationship more precisely, we performed a meta-analysis of all available studies on the subject. Methods: Case-control studies were identified by searching Pubmed, Embase, ISI Web of Science, and Wanfang databases through September 6, 2012. We used the pooled odds ratio (OR) with its corresponding 95% confidence interval (95%CI) to evaluate the association of GSTM1 polymorphism with NPC susceptibility. Subgroup analyses by pathological types, sex and smoking status were performed to further identify the association. Results: Overall, 11 published studies with 1,513 cases and 2,802 controls were finally included into this meta-analysis according to the inclusion criteria. Meta-analysis of total studies showed that the null genotype of GSTM1 was significantly associated with increased risk of NPC, when comparing with the non-null genotype (OR=1.51, 95%CI=1.33-1.72, POR<0.001). The association was still statistically significant in subgroup analysis of patients with nasopharyngeal squamous cell carcinoma (OR=1.73, 95%CI=1.24-2.42, POR=0.001). Males with the null genotype of GSTM1 were more likely to subject to NPC than females. In addition, the association between the null genotype of GSTM1 and NPC risk was strongest in individuals with exposure to smoking. Sensitivity analysis by sequential omission of any individual studies one at a time further demonstrated the significant association. Conclusions: The findings suggest that the null genotype of GSTM1 is a risk factor for NPC, and there is a gene-smoking interaction in this association.

Attenuation of ROS Generation by KCNE1 Genes in Cisplatin-treated Auditory Cells

  • Kim, Eun Sook;Park, Sang-Ho;Park, Raekil
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.3
    • /
    • pp.114-119
    • /
    • 2013
  • Potassium is essential for the proper functioning of the ears. The inner ear's endolymph differs from all other extracellular fluids (in its positive potential) and in the ionic compositions in the various parts of the endolymphatic space. Ion concentration of the endolymph is 150 mM of potassium, which is comparable to the concentrations in other organs. Cisplatin (cis-diamminedichloroplatinum II: CDDP) is one of the most effective anticancer drugs, widely used against various tumors. However, its clinical use is limited by the onset of severe side effects, including ototoxicity and nephrotoxicity. For ototoxicity, a number of evidences in cytotoxic mechanism of cisplatin, including perturbation of redox status, increase in lipid peroxydation, and formation of DNA adduct, have been suggested. Therefore, in this study, the author investigated the relationship between the potassium ions on cisplatin-induced cytotoxicity in HEI-OC1 cells associated with reactive oxygen species (ROS). KCNE1 gene expression by the concentration of intracellular potassium appeared in the plasma membrane and increased the concentration of intracellular potassium. Cisplatin decreased the viability of HEI-OC1 cells, but the KCNE1 gene increased. Also, the KCNE1 gene significantly suppressed generation of intracellular ROS by cisplatin. Western blot analysis showed that the KCNE1 gene increased phase II detoxification enzymes markers such as superoxide dismutase 1 (SOD1), superoxide dismutase (SOD2), NAD(P)H:quinine oxidoreductases (NQO1), which were associated with the scavenger of ROS. These results suggest that the KCNE1 gene for intracellular potassium concentration ultimately prevents ROS generation from cisplatin and further contributes to protect auditory sensory hair cells from ROS produced by cisplatin.

  • PDF