• Title/Summary/Keyword: Detorque

Search Result 22, Processing Time 0.03 seconds

A STUDY OF SCREW LOOSENING AFTER DYNAMIC CONTINOUS FATIGUE TEST OF SEVERAL ABUTMENT SCREW (수종 임플랜트 지대주나사의 반복하중 후 나사풀림에 관한 연구)

  • Kim Jin-Man;Han Jung-Suk;Lee Sun-Hyung;Yang Jae-Ho;Lee Jae-Bong;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.519-531
    • /
    • 2003
  • Statement of problem : Chronic implant screw loosening remains a problem in restorative practices. Some implant manufactureres have introduced abutment screws with treated material, surfaces and macrostructures in an effort to reduce potential loosening. Purpose : This study evaluated the materials and loading cycles on detorque value after dynamic continous fatigue test in the sinulated conditions of posterior single restoration. Material and method : Fourteen of each of the following abutment screws - titanium alloy, gold alloy, gold-tite, and titanium alloy modified - were used in test. SEM is used to verify macrostructures of each screws. $ZrO_2/Al_2O_3$ composite abutment was tightened on $4{\times}10.0mm$ titanium external implant at 30 Ncm. Cyclic loading machine delivered dynamic loading forces between 20 and 320N for 100,000, 200,000, 300,000, 500,000, and 1,000,000 cycles at frequencies 14Hz. Torque and detorque value after loading was measured. Results : All measued screws had different screw length and thread form. Titanium modified screw had greater detorque value than others before and after cyclic loadings(p<0.05). All abutment screws had no significant change in mean percentage of detorque value after loading to initial value after less than 500.000 cyclic loadings, but significant lower value after 1,000,000 cycles(p<0.05). Conclusion : Within limintations of this study all abutment screws may be loosend after about 1 year use. Annual check-up is nessasary to prevent screw loosening.

Effects of anaerobic sealing agents on preload maintenance of screw-retained implant prosthesis with surface of screws (임플란트 보철물 나사의 전하중 유지에 나사 표면에 따른 혐기성 나사 고정제의 효과)

  • Ryu, Seung-Beom;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the preload maintenance of the retaining screw when using anaerobic sealing agents in implant fixture and abutment components. Specifically, the study examines the effects of anaerobic sealing agents on different types of screws. Materials and methods: External hexagon implants made of titanium and anti-rotational abutments were used. Titanium abutment screws and ebony abutment screws from the same manufacturer were used. The experiment was divided into four groups (n = 10 in each group). In the control group, no sealing agent was used at the implant fixture and abutment screw interface. All abutment screws were tightened according to the manufacturer's recommended torque (30 N.cm). After 24 hours, the removal torque (detorque) of each screw was measured using a digital torque gauge device. The data were analyzed by two-way ANOVA test according to normality distribution satisfaction. Results: Looking at the results for each group, titanium screws and no treatment showed detorque values of 20.3 ± 1.6 N.cm. titanium screws and applied anaerobic sealing agent showed detorque values of 32.4 ± 6.7 N.cm. Ebony screws and no treatment showed detorque values of 20.2 ± 1.5 N.cm. ebony screws and applied anaerobic sealing agent showed detorque values of 30.4 ± 4.5 N.cm. Conclusion: The detorque value was higher in the case of using anaerobic sealing agents in both the titanium screw and ebony screw groups. But there was no difference between the two screws.

Influence of Implant Abutment Systems on Detorque Value and Screw Joint Stability (임플랜트 지대주 종류가 나사풀림력과 연결부의 안정성에 미치는 영향)

  • Bae, Byung-Ryong;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Purpose : This study was designed to evaluate the influence of implant abutment materials on detorque value and screw joint stability before and after dynamic fatigue test. Materials & Methods : The external hexagonal fixture and three different groups of abutment (titanium abutments, zirconia abutments, and UCLA abutments) were used. The detorque value before loading and after loading (cyclic loading up to $10^5$ cycles) of the abutment screw were measured. Result : 1. There was no significant difference in detorque value before loading among the each group. 2. There was no significant difference in detorque value after loading among the each group. 3. Detorque values before and after cyclic loading in each group were not significantly different. 4. There was no significant difference in loss percentage of removal torque before loading among the each group. 5. There was no significant difference in loss percentage of removal torque after loading among the each group. 6. There was no significant difference in loss percentage of removal torque according to loading among the each group. Conclusion : Short term screw loosening of three types of abutment was not significantly different. When bite force was applied, there was no significant difference in screw loosening between before loading and after loading.

Comparative study of abutment screw loosening with or without adhesive material

  • Arshad, Mahnaz;Shirani, Gholamreza;Refoua, Sina;Yeganeh, Mohammadreza Rahimi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.99-103
    • /
    • 2017
  • PURPOSE. The purpose of this study was to achieve more retention and stability and to delay or prevent screw loosening. MATERIALS AND METHODS. Twenty implants (Implantium 3.4 mm, Dentium, Seoul, Korea) were divided into 2 groups (n = 20). In the first group, an adhesive material was applied around the screw of the abutments (test group). In the second group, the screws are soaked in saliva (control group). All the screws were torqued under 30 N/cm, Then, the samples were gone through a cyclic fatigue loading process. After cyclic loading, we detorqued screws and calculated detorque value. RESULTS. In comparison with the control group, all the implant screws in the test group were smeared with the adhesive material, showing significant higher detorque value. CONCLUSION. There are significantly higher detorque values in the group with adhesive. It is recommended to make biocompatible adhesive to reduce screw loosening.

Detorque force and surface change of coated abutment screw after repeated closing and opening (코팅된 지대주 나사의 반복 착탈 후 풀림력과 표면변화에 대한 연구)

  • Jang, Jong-Suk;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.500-510
    • /
    • 2008
  • Statement of problem: Recently researches about WC/C (Tungsten Carbide/Carbon) or TiN (Titanium Nitride) coating on abutment screws are going on. It decreases friction coefficient, resistance against corrosion and withdrawal of physical fragility when the coating is applied to the metal surfaces. It is reported that coated abutment screws improved abrasion, adaptability and detorque force. Purpose: This study is about the effects of coated abutment screws on loosening of screw and for the purpose of solving the loosening phenomenon of abutment screws which is clinical problem. Material and methods: Detorque force and surface changes are compared when 10 times of repeated closing and opening are applied to both uncoated titanium abutment screws (Group A) and coated abutment screws with WC/C (Group B) and TiN (Group C). Each group was made up of 10 abutment screws. Results: 1. Before repeated closing and opening, Somewhat rough surface with regular direction was observed in Group A. Coated granules were observed in group B and group C and overall coated layer appeared in regular and smooth form. 2. Before repeated closing and opening, The coated surface showed bigger and thicker size of coated granules in Group C than Group B. 3. After repeated closing and opening, abrasion and deformation of abutment screw surface was observed in Group A and Group B. Exfoliation phenomenon was observed in Group B. 4. Group A showed biggest range of decrease when the weight changes of abutment screws were measured before and after repeated closing and opening. Group C showed less weight changes than Group B but there was no statistical difference between two groups. 5. Group B and Group C showed higher average detorque force than Group A and there was statistical difference. 6. Group A showed more prominent decrease tendency of average detorque force than Group B and Group C. Conclusion: Coated abutment screws with WC/C or TiN did not show prominent surface changes than uncoated titanium abutment screws even though they were repeatedly used. And they showed excellent resistance against friction and high detorque force. Thus it is considered that adaptation of WC/C or TiN coating on abutment screws will improve the screw loosening problem.

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

THE INFLUENCE OF IMPLANT FIXTURE-ABUTMENT CONNECTION DESIGN ON SCREW LOOSENING (임플랜트 지대주에 따른 나사 풀림의 연구)

  • Mun Yang-Suk;Park Sang-Won;Vang Mong-Sook;Yang Hong-So;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.174-184
    • /
    • 2006
  • Purpose: Current trend in implant dentistry is changing from external connection to internal connection. To evaluate the splinting of external and internal connection implant on screw loosening, 2-units prosthesis was fabricated with BioPlant $System^(R)$ of external connection type and Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. Material and Method: Experimental group is classified into three groups. 1) $G_1-EE$: 2-units prosthesis was fabricated with two Bioplant $System^(R)$ of external connection type. 2) $G_1-EI$: 2-units prosthesis was fabricated with one BioPlant $System^(R)$ of external connection type and one Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. 3) $G_1-II$: 2-units prosthesis was fabricated with two Lifecore STAGE-1 Single Stage Implant $System^(R)$ of internal connection type. In fabricating 2-units prosthesis, two hexed abutments are recommended when two implants are installed parallel, otherwise one hexed abutment is used on major occlusal force area and one nonhexed abutment is used on the other area. Since it is rare to find two implants being parallel, it is hard to fabricate prosthesis with passive adaptation using two hexed abutments. It is much more difficult to acquire passive adaptation when using hex abutment compared to nonhex abutment. To evaluate the influence of hexed and nonhexed abutment on screw loosening, 2-units prosthesis was fabricated with hexed and nonhexed abutment. Experimental group is classified into three groups. 1) $G_2-HH$: 2-units prosthesis was fabricated with two hexed abutments. 2) $G_2-HN$: 2-units prosthesis was fabricated with one hexed abutment and one nonhexed abutment. 3) $G_2-NN$: 2-units prosthesis was fabricated with two nonhexed abutments. Result: The results of comparing the detorque value after loading on a each prosthesis periodically are as follows. 1. In splinting group of external and internal connection implant, $G_1-II$ group demonstrated the biggest detorque value, followed by $G_1-EI$ group and $G_1-EE$ group. 2. There is no notable significance between external connection implant of $G_1-EI$ group and $G_1-EE$ group and also no significance between internal connection implant of $G_1-EI$ group and $G_1-II$ group. 3. $G_2-HH$ group showed higher detorque value than $G_2-HN\;and\;G_2-NN$ group. From the results, we can concluded that using both external connection and internal connection implant together is clinically acceptable and in order to acquire a good passive adaptation in fabricating 2-units implant prosthesis we can use two nonhexed abutments.

Stability of the prosthetic screws of three types of craniofacial prostheses retention systems

  • Lanata-Flores, Antonio Gabriel;Sigua-Rodriguez, Eder Alberto;Goulart, Douglas Rangel;Bomfim-Azevedo, Veber Luiz;Olate, Sergio;de Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.6
    • /
    • pp.352-357
    • /
    • 2016
  • Objectives: This study aimed to evaluate the stability of prosthetic screws from three types of craniofacial prostheses retention systems (bar-clip, ball/O-ring, and magnet) when submitted to mechanical cycling. Materials and Methods: Twelve models of acrylic resin were used with implants placed 20 mm from each other and separated into three groups: (1) bar-clip (Sistema INP, São Paulo, Brazil), (2) ball/O-ring (Sistema INP), and (3) magnet (Metalmag, São Paulo, Brazil), with four samples in each group. Each sample underwent a mechanical cycling removal and insertion test (f=0.5 Hz) to determine the torque and the detorque values of the retention screws. A servo-hydraulic MTS machine (810-Flextest 40; MTS Systems, Eden Prairie, MN, USA) was used to perform the cycling with 2.5 mm and a displacement of 10 mm/s. The screws of the retention systems received an initial torque of 30 Ncm and the torque values required for loosening the screw values were obtained in three cycles (1,080, 2,160, and 3,240). The screws were retorqued to 30 Ncm before each new cycle. Results: The sample was composed of 24 screws grouped as follows: bar-clip (n=8), ball/O-ring (n=8), and magnet (n=8). There were significant differences between the groups, with greater detorque values observed in the ball/O-ring group when compared to the bar-clip and magnet groups for the first cycle. However, the detorque value was greater in the bar-clip group for the second cycle. Conclusion: The results of this study indicate that all prosthetic screws will loosen slightly after an initial tightening torque, also the bar-clip retention system demonstrated greater loosening of the screws when compared with ball/O-ring and magnet retention systems.

EFFECT OF A COUNTER-TORQUE DEVICE AND THE INTERNAL HEXAGON OF ABUTMENT ON THE TIGHTENING TORQUE TRANSMITTED TO THE IMPLANT (회전방지장치와 지대주의 내육각구조가 임플란트로 전달되는 조임 회전력에 미치는 영향)

  • Lee Sang-Min;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.223-231
    • /
    • 2003
  • Statement of problem : Little is known about the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. Purpose : The purpose of this study was to examine the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. Material and Methods : In this study, three types of abutment were used, (1) two-piece conical abutment with hexagon, (2) two-piece conical abutment without hexagon, and (3) one-piece conical abutment without hexagon. The experimental groups were divided into five groups according to the type of abutment and the usage of a counter-torque device. Group I : two-piece conical abutment with internal hexagon was tightened without the use of a counter-torque device. Group II : two-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group III : one-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group IV : two-piece conical abutment with internal hexagon was tightened with the use of a counter-torque device Group V : two-piece conical abutment without internal hexagon was tightened with the use of a counter-torque device. Abutments were tightened 20Ncm torque with the use of manual torque wrench and then torque values were measured by torque-gauge. After the measurement of torque values, all groups were loosened with the use of manual torque wrench and then detorque values were measured by torque-gauge. Results : The results were as follows. 1. There were no differences in torque values among three types of abutment. 2. Regardless of the existence of the internal hexagon of abutment, a counter-torque device decreased the tightening torque transmitted to the implant about 92% 3. In group III showed the highest detorque value, however there were no differences among group I, II, IV and V. Conclusion : Within the limitations of this study, it was concluded that the internal hexagon of abutment has no effect on the tightening torque transmitted to the implant and the detorque value of abutment screw. The use of a counter-torque device is essential to prevent microfracture on the implant-bone interface but has no effect on preload.

Comparison of Implant Torque Controllers using Detorque Value (풀림토크를 이용한 임플란트 토크조절기의 비교)

  • Huh, Yoon-Hyuk;Cho, Lee-Ra;Kim, Dae-Gon;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.419-432
    • /
    • 2010
  • Various torque generating devices have been developed and employed to apply a proper torque. These devices are usually calibrated by the manufacturer to apply appropriate torque levels for their specific implants and attachments. The purpose of this investigation was to determine and compare the accuracy of the torque controllers. In this study, 4 types of torque controllers were used; torque limiting device(TLD), torque indicating device(TID) and contra angle torque driver(CA), electronic torque controller(ETC). Digital torque gauge was employed to measure the de-torque value. Thirty cycles of tightening and loosening were repeated with each torque controller. All implant torque controllers have shown slight errors and deviations. The contra angle torque driver exhibited the most accurate data. In the limitation of this study, it would be recommended that the implant torque controllers should be checked whether uniformed and precise torque can be generated and a measuring error should be corrected.