• Title/Summary/Keyword: Detonator

Search Result 89, Processing Time 0.026 seconds

Tunnel Blasting case by Combination of Electronic Detonator and Non-electric Detonator (전자뇌관과 비전기뇌관을 조합한 터널발파 시공사례)

  • Lee, Min Su;Kim, Hee Do;Lee, Hyo;Lee, Jun Won
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • It proceed the trial test by applying blasting system with combination of electronic detonator and non-electric detonator(Supex Blasting Method) for the purpose of preventing the over-break as well as controling the blasting vibration and noisy at the site of Boseong-Imseongri railroad section ${\bigcirc}{\bigcirc}$. As a result of that, the blasting vibration and noisy was measured within the allowable standard of vibration. In conclusion, the combination of electronic detonator and non-electric detonator can not only reduce come construction cost, level of vibration and noisy but also get the prevention effect for Public resentment and minimize the rock-damage through over break control.

A Method for the Analysis of the Radiowave Receiving Characteristics of the Electric Detonator (전기뇌관의 전파 수신특성 분석방법)

  • Kim, Mi-Sun;Park, Jin-Seok;Ahn, Bierng-Chearl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • In this paper, a method is proposed for the analysis of radiowave receiving characteristics of an ammunition with electric detonator. In this method, an ammunition with electric detonator is modelled as a receiving antenna with its gain obtained by computer simulation or measurement. The induced radiowave power is obtained by inserting the gain of the electric detonator in the antenna coupling formula. Radiowave receiving characteristics at very close distances are obtained by Treasuring the transmission coefficient between a half-wave dipole and the electric detonator model. Radiowave receiving characteristics of the electric detonator in a 105mm tank ammunition are obtained using the proposed method and the safety of the 900 MHz RFID reader on the detonator is assessed.

Influence of the Initiation Error of the Delay Detonator on the Rock Fracture Process in Smooth Blasting (SB발파에서 지발뇌관의 기폭초시오차가 암반파괴과정에 미치는 영향)

  • 조상호;양형식;금자승비고
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.121-132
    • /
    • 2004
  • Dynamic fracture processes of rock were analyzed to investigate the influence of the initiation error of the delay detonator in smooth blasting. The analysis models for the smooth blasting considered two blast geometries with three charge holes, and the simultaneous initiations without initiation error, with the initiation error of electronic delay detonator and with the initiation error of pyrotechnically delay detonator(DS detonator) were applied to the charge holes. In order to examine the effect of electronic and DS initiation detonator on the smooth blasting, the fracture process results were analyzed statistically.

Storage lifetime estimation of detonator in Fuse MTSQ KM577A1 (기계식 시한 신관 KM577A1용 기폭관 저장수명 예측)

  • Chang, Il-Ho;Park, Byung-Chan;Hwang, Taek-Sung;Hong, Suk-Whan;Back, Seung-Jun;Son, Young-Kap
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.4
    • /
    • pp.504-511
    • /
    • 2010
  • A fuze detonator comprising star shells is an important device so that its failure usually leads to failure of the shells. In this paper, accelerated degradation tests of RD1333 (lead azide) using temperature stress were performed, and then degradation data of explosive power for the detonator were analyzed to predict the storage lifetime of detonator. Degradation data analysis to estimate the storage lifetime is based on a distribution-based degradation process. Statistical distribution parameters of explosive power degradation measures at each time were estimated for each temperature level, and then reliability of the detonator for each accelerated temperature level was estimated using both time-varying distribution parameters and critical level of explosive power. Arrhenius model was applied to estimate storage lifetime of the detonator under the field temperature condition. Accelerated distribution-based degradation analysis to estimate storage lifetime is explained in detail, and estimation results are compared to field data of storage lifetime in this paper.

Blasting Utilizing Non-electric Detonator and Its Principle Planning and Operation (비전기 뇌관의 발파와 기본 설계 및 시공)

  • Choi Young-Cheon
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.23-29
    • /
    • 2004
  • Non-electric detonator was developed to improve the blasting efficiency of electric detonator. It is increasingly utilized in surface and tunnel blasting due to its safety in external electric shock, precise delayed time, and decrease in blasting vibration and noise. The paper describes the detonating system of non-electric detonator, principle operating and planning methods, and case history so that it can be contributed to improve blasting technology.

Non-electric Detonator Initiation System Using Spark Trigger (스파크 트리거에 의한 비전기식 뇌관의 기폭 시스템)

  • Yu, Seon-Jin;Kang, Dae-Jin;Kim, Nam-Soo;Jang, Hyong-Doo;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • Non-electric detonator has been used in underground excavations because of its strong resistance against electric impacts. However, electric detonator is often used to initiate the non-electric detonator instead of using an exclusive non-electric blasting machine due to economical reason. Spark Trigger is introduced as a solution of unexpected explosive hazard from using an electric detonator as an initiator of non-electric system. Since Spark Trigger System does not need expensive tube and no plastic waste is left, this system is proved to be more economical and eco-friendly initiate system than the standard non-electric initiating system.

A Comparative Study on the Characteristics of Vibration Propagation during Open-Pit Blasting using Electric and Electronic Detonators (전기 및 전자뇌관을 이용한 노천발파 시 진동전파 특성에 관한 비교 연구)

  • Lee, Ki-Keun;Lee, Chun-Sik;Hwang, Nam-Sun;Lee, Dong-Hee
    • Explosives and Blasting
    • /
    • v.37 no.1
    • /
    • pp.24-33
    • /
    • 2019
  • Recently, Electronic Detonators have gradually increased their performance for various purposes such as vibration control and improved Fragmentation. This study analyzed the vibration estimation equations of electric and electronic detonator blast by comprehensive analysis of the vibration data collected during electric and electronic detonator blast waves at the comparison sites of urban areas, geology and soil conditions, stone quarries and mines in different areas of Korea from June 2017 to December 2018. It has been confirmed that electronic detonator blast can meet the criteria for allowing vibration even if maximum charge weight per delay is increased by 1.5 times compared to the electric detonator blast.

A study on full-face sequential blasting using electronic detonator (전자뇌관을 이용한 수직구 전단면 다단시차 분할 발파에 대한 연구)

  • Yoon, Ji-Sun;Kim, Su-Hyun;Bae, Sang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 2008
  • In this study, in order to reduce appeals regarding vibration and noise from blasts, the optimum delay-time of the electronic detonator, which can minimize blast vibration, is found through blast-waveform composition and blasting simulation, and we have developed the full-face Sequential Blasting Method based on the studies of damping properties of full-face section blasting. The optimum delay-time of the electronic detonator and Full-face Sequential Blasting Method using electronic detonator was applied to the Gyeongbu high-speed railway construction site to test the feasibility of this method.

  • PDF

Comparative Study on the Characteristics of Ground Vibrations Produced from Borehole Blast Tests Using Electronic and Electric Detonators (전자뇌관과 전기뇌관을 사용한 시추공 발파시험에서의 지반진동 특성에 관한 비교 연구)

  • Choi, Hyung-Bin;Won, Yeon-Ho
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.37-49
    • /
    • 2010
  • Ground vibration caused by blasting in the urban area close to structures can give some indirect damage to human body and may lead to structural damage to buildings. At the stage of design or when complaints were filed by residents, the test blasting in borehole, which is most practical for expressing simple vibration wave form quantitatively, is usually chosen for assessing the degree of damage to structures. In this paper, some lessons gained from the application of electronic detonator triggering system in borehole test blasting are presented. The difference in delay time of detonator when borehole is blasted by electronic detonator and electric detonator are discussed. The peak particle velocities measured at the structure embedded in the similar rock layer to main line of tunnel at test site and measured at the road surface just above the tunnel having different overburden layers were analysed to draw their relationship. By comparing the results with those appearing in some published literatures, the usefulness of the borehole test blasting and the importance of delay time of detonator are addressed.

A Case Study of Blasting with Electronic Detonator (전자뇌관을 활용한 발파 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hoon;Lee, Seung-Jae
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • Sites, where explosives are used, are constantly under constraint of vibration and noise levels. If a sensitive area is located nearby the sites, mechanical excavation has been preferred rather than blasting. Recently, however, blasting using electronic detonators is applicable in the areas, where previously should be excavated by mechanical methods. $HiTRONIC^{TM}$ is a fourth-generation detonator that utilizes Hanwha Corporation's advanced electronic technology. The detonator contains IC-Chip, which allows delay times between 0~15,000ms with 1ms interval. Furthermore, the product can provide high accuracy(0.01%) for accurate-blasting. Electronic detonator is widely used in highway and railway construction sites, large limestone quarries, and other works. In this paper, several sites, in which HiTRONIC was used, are introduced in order to enhance understanding of electronic detonator.