• 제목/요약/키워드: Deterministic optimization

검색결과 225건 처리시간 0.021초

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

이중 쐐기형 초음속 흡입구의 압력회복률에 대한 신뢰성 기반 최적설계 (Reliability Based Design Optimization for the Pressure Recovery of Supersonic Double-Wedge Inlet)

  • 이창혁;안중기;배효길;권장혁
    • 한국항공우주학회지
    • /
    • 제38권11호
    • /
    • pp.1067-1074
    • /
    • 2010
  • 본 연구에서는 이중 쐐기형 초음속 흡입구의 압력회복률에 대한 신뢰성 최적설계를 수행하였다. 주어진 설계영역에서 다양한 설계변수의 불확실성을 고려하여 흡입구의 압력회복률을 확률적으로 모델링하였으며, 목적함수로는 흡입구 항력을 선정하였다. 신뢰성 최적설계에 앞서 전산해석비용을 줄이기 위해 실험계획법과 크리깅 모델을 이용하여 적절한 설계공간을 탐색하였다. 신뢰성 기법의 정확도 검증을 위해 몬테카를로 시뮬레이션을 수행하였으며 이 결과를 신뢰성 기법 결과가 잘 추종함을 확인하였다. 신뢰성 기반 최적설계를 수행한 결과, 설계변수의 불확실성을 고려함으로써 시스템의 신뢰성을 확보하였다. 시스템 설계의 다양한 불확실성을 고려하기 위해서는 신뢰성 기반 최적설계가 유용한 접근방법임을 확인할 수 있었다.

Reliability-based Optimization for Rock Slopes

  • 이명재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1998년도 터널.암반역학위원회 박사학위 논문집
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF

자동차 현가장치 부품에 대한 신뢰성 기반 최적설계에 관한 연구 (A Study for the Reliability Based Design Optimization of the Automobile Suspension Part)

  • 이종홍;유정훈;임홍재
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.123-130
    • /
    • 2004
  • The automobile suspension system is composed of parts that affect performances of a vehicle such as ride quality, handling characteristics, straight performance and steering effort, etc. Moreover, by using the finite element analysis the cost for the initial design step can be decreased. In the design of a suspension system, usually system vibration and structural rigidity must be considered simultaneously to satisfy dynamic and static requirements simultaneously. In this paper, we consider the weight reduction and the increase of the first eigen-frequency of a suspension part, the upper control arm, especially using topology optimization and size optimization. Firstly, we obtain the initial design to maximize the first eigen-frequency using topology optimization. Then, we apply the multi-objective parameter optimization method to satisfy both the weight reduction and the increase of the first eigen-frequency. The design variables are varying during the optimization process for the multi-objective. Therefore, we can obtain the deterministic values of the design variables not only to satisfy the terms of variation limits but also to optimize the two design objectives at the same time. Finally, we have executed reliability based optimal design on the upper control arm using the Monte-Carlo method with importance sampling method for the optimal design result with 98% reliability.

성장-변형률법을 이용한 신뢰성 기반 형상 최적화 (Reliability-based Shape Optimization Using Growth Strain Method)

  • 오영규;박재용;임민규;박재용;한석영
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.637-644
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the growth-strain method. An actual design involves uncertain conditions such as material property, operational load, Poisson's ratio and dimensional variation. The purpose of the RBSO is to consider the variations of probabilistic constraint and performances caused by uncertainties. In this study, the growth-strain method was applied to shape optimization of reliability analysis. Even though many papers for reliability-based shape optimization in mathematical programming method and ESO (Evolutionary Structural Optimization) were published, the paper for the reliability-based shape optimization using the growth-strain method has not been applied yet. Growth-strain method is applied to performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints in the change of average mises stress. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization. It was verified that the reliability-based shape optimization using growth-strain method are very effective for general structure. The purpose of this study is to improve structure's safety considering probabilistic variable.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

유전알고리듬을 이용한 측면 에어백 전개 알고리듬의 최적화 (Optimization of Side Airbag Release Algorithm by Genetic Algorithm)

  • 김권희;홍철기
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.45-54
    • /
    • 1998
  • For proper release of side airbags, the onset of crash should be detected first. After crash detection, the algorithm has to make a decision whether the side airbag deployment is necessary. If the deployment is necessary, proper timing has to be provided for the maximum protection of driver or passenger. The side airbag release algorithm should be robust against the statistical deviations which are inherent to experimental crash test data. Deterministic optimization algorithms cannot be used for the side aribag release algorithm since the objective function cannot be expressed in a closed form. From this background, genetic algorithm has been used for the optimization. The optimization requires moderate amount of computation and gives satisfactory results.

  • PDF

불확실성 요소들을 고려한 3차원 날개의 공력 최적설계 (A 3-D Wing Aerodynamic Design Optimization Considering Uncertainty Effects)

  • 안중기;김수환;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.9-16
    • /
    • 2004
  • This study presents results of aerodynamic wing optimization under uncertainties. To consider uncertainties, an alternative strategy for reliability-based design optimization(RBDO) is developed. The strategy utilizes a single loop algorithm and a sequential approximation optimization(SAO) technique. The SAO strategy relies on the trust region-SQP framework which validates approximated functions at every iteration. Further improvement in computational efficiency is achieved by applying the same sensitivity of limit state functions in the reliability analysis and in the equivalent deterministic constraint calculation. The framework is examined by solving an analytical test problem to show that the proposed framework has the computational efficiency over existing methods. The proposed strategy enables exploiting the RBDO technique in aerodynamic design. For the aerodynamic wing design problem, the solution converges to the reliable point satisfying the probabilistic constraints.

  • PDF

신뢰성을 고려한 유연 날개의 다점 최적 설계에 관한 연구 (A STUDY ABOUT MULTI-POINT RELIABILITY BASED DESIGN OPTIMIZATION OF FLEXIBLE WING)

  • 김수환;이재훈;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.99-104
    • /
    • 2005
  • For the efficient reliability analysis, Bi-direction two-point approximation(BTPA) method is developed which solves shortcomings of conventional two-point approximation(TPA) methods that generate an approximate surface with low accuracy or sometimes do an unstable approximate surface. The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, the approximate reliability analysis approaches on the TPA surface are proposed. Using these FORM and SORM analysis strategies, multi-point aerodynamic-structure interacted shape design optimizations with uncertainty are performed very efficiently.

  • PDF

광역최적화 방법론의 비교 연구 (Comparative study of some algorithms for global optimization)

  • 양승호;이현주;이재욱
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.693-696
    • /
    • 2006
  • Global optimization is a method for finding more reliable models in various fields, such as financial engineering, pattern recognition, process optimization. In this study, we compare and analyze the performance of the state-of-the-art global optimization techniques, which include Genetic Algorithm (DE,SCGA), Simulated Annealing (ASA, DSSA, SAHPS), Tabu & Direct Search (DTS, DIRECT), Deterministic (MCS, SNOBIT), and Trust-Region algorithm. The test functions for the experiments are Benchmark problems in Hedar & Fukushima (2004), which are evaluated with respect to efficiency and accuracy. Through the experiment, we analyse the computational complexity of the methods and finally discuss the pros and cons of them.

  • PDF