For the purpose of developing the method for efficiently calculating the design sensitivity and the reliability for the complicated structure such as ship structure, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis needed in the reliability-based design is performed. The reliability analysis is carried out for the initial yielding failure, in which the derivative derived in the deterministic desin sensitivity is used. The present PFEM-based reliability method shows good agreement with Monte Carlo method in terms with the variance of response and the associated probability of failure even at the first or first few iteration steps. The probabilistic design sensitivity analysis evaluates explicitly the contribution of each random variable to probability of failure. Further, the reliability index variation can be easily predicted by the variation of the mean and the variance of the random variables.
확률론적 해석방법 (probabilistic analysis)은 현장으로부터 획득한 자료들에서 일반적으로 발생하는 가변성과 불확실성을 효과적으로 정량화하여 해석에 이용할 수 있는 방법 중의 하나로 제안되었다. 특히 암반사면공학에서는 이러한 가변성과 불확실성이 불연속면의 방향 및 기하학적 특성, 그리고 실내실험 결과의 분산으로 나타난다. 확률론적 해석방법은 불연속면의 기하학적 특성과 강도 특성을 확률변수 (random variable)로 취급하여 신뢰성이론 (reliability theory)과 확률이론 (probability theory)을 근거로 분석하였으며 이를 기초로 하여 Monte Carlo Simulation과 같은 해석법을 이용, 구조물의 붕괴가능성을 확률로 표현하였다. 확률론적 해석 방법은 기존의 안전율을 대체하여 구조물의 안정성을 붕괴확률 (probability of failure)로 제안하였으며 이 붕괴확률은 안전율의 확률분포함수 (probability density function)에서 안전율이 1보다 작을 가능성을 확률로 나타낸 수치이다. 이 방법은 안전율의 개념을 기초로 하여 자료의 분산을 고려하지 않은 채 단일 대표 값만을 이용하여 구조물의 안정성을 판단하는 전통적인 결정론적 해석방법 (deterministic analysis)과 비교되어진다. 본 논문에서는 확률론적 해석방법을 이용하여 불연속면 특성들의 확률특성을 고찰하였으며 이를 기초로 하여 암반사면의 안정성 해석에 응용했다. 또한 확률론적 해석과 결정론적인 해석의 결과를 비교, 그 차이점을 설명하고자 하였다.
In this paper, a reliability-groundwater flow program is developed by coupling the 2-D finite element numerical groundwater flow program with first and second order reliability program. From the parametric study of hydraulic conductivity of soil layers, the increase of both mean and variance of hydraulic conductivity results in the increase of probability of exceeding the threshold hydraulic head. The probability of failure was more sensitive to parameters of weathered granitic soil and rock located at the middle and bottom of the excavation than those at the other locations. It can be recommended from this study that the reliability method, which can include the uncertainty of soil parameters, should be performed together with the deterministic analysis to compensate the weakness of the latter analysis for the groundwater flow problem of underground excavations.
Reliability Based Design Optimization(RBDO) is one of the optimization methods that minimize the product failure due to small changes of operating conditions or process errors. It searches the optimum that satisfies the safety margin of each constraint, and it gives stable and reliable designs. However, RBDO requires many times oj computational efforts compared with the conventional deterministic optimization(DO) to evaluate the probability of failure about each constraint, therefore it is hard to apply directly to large-scaled problems such as a flexible wing shape design optimization. For the efficient reliability analysis, the approximate reliability analysis method with the two-point approximation(TPA) is proposed In this study, the lift-to-drag ratio maximization designs are performed with 3-dimensional Navier-Stokes analysis and NASTRAN structural analysis, and the optimization results about the deterministic, FORM and SORM are compared.
This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.
본 논문에서는 암반사면의 절토시 현장지반 시추조사의 불충분한 자료와 비균질한 지반특성에서 오는 불확실성이 암사면의 파괴확률에 미치는 영향을 알아보기 위하여 신뢰성해석을 실시하였고 이를 확정론적 해석결과와 비교하였다. 해석에 사용된 확률변수는 절리면의 점착력과 마찰각, 암반의 단위중량 이었으며 절리면의 경사각은 확률변수로 적용한 경우와 그렇지 않은 경우로 나누어 해석하였다. 해석 결과 대상 절토사면의 경우 확정론적 해석시 안정하게 나타남에도 신뢰도 해석에서는 연약 지질층의 영향에 의한 높은 불명확성으로 인하여 높은 파괴확률을 갖는 것으로 나타났다. 각 확률변수의 평균값과 분산에 대한 파괴확률의 민감도는 점착력이 가장 큰 것으로 나타났으며 평균값이 미치는 민감도가 분산의 경우보다 크게 나타나 현장 지반물성치들에 대한 평균값의 정확한 산출이 중요한 것으로 나타났다.
In this paper we present a simple and efficient robust optimal design formulation for MEMS structures and its application to a resonant-type micro probe. The basic idea is to use the gradient index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-effective and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation. This method, although shown for MEMS structures, may as well be easily applied to conventional mechanical structures where information on uncertainties is lacking but robustness is highly important.
In this paper we present a simple and efficient robust optimal design formulation and its application to a resonant-type micro probe. The basic idea is to use the Gradient Index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-efficient and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation.
A novel method for evaluating the anisotropy of the deterministic features in a stochastic 2D data is introduced. The ability of the wavelet transform for the identification of the abrupt discontinuities could be used to characterize the boundary of the deterministic area in a 2D stochastic data, such as flocs in paper structure. The one-dimensional wavelet transform with a small-scale range in MD and CD could quantify the amount of the edge in both directions, depending on the intensity of each floc. The flocs that are aligned in the MD direction result in a higher value of local wavelet energy in the CD direction. Therefore, the ratio of the total wavelet energy in CD and MD directions can be used as a new anisotropy index. This index is a measure of the floc-orientation and can provide an excellent tool to obtain the orientation distribution and the major oriented angle of flocs. Various simulated images and real stochastic data such as local gloss variation of printed image and formation image, have been tested and the results show this analysis method is very reliable to measure the anisotropy of the deterministic features.
In this study, we investigate the predictability of intraseasonal monthly temperature and precipitation variations using hindcast datasets from eight global circulation models participating in the operational multi-model ensemble (MME) seasonal prediction system of the Asia-Pacific Economic Cooperation Climate Center for the 1983~2010 period. These intraseasonal monthly variations are defined by categorical deterministic analysis. The monthly temperature and precipitation are categorized into above normal (AN), near normal (NN), and below normal (BN) based on the σ-value ± 0.43 after standardization. The nine patterns of intraseasonal monthly variation are defined by considering the changing pattern of the monthly categories for the three consecutive months. A deterministic and a probabilistic analysis are used to define intraseasonal monthly variation for the multi-model consisting of numerous ensemble members. The results show that a pattern (pattern 7), which has the same monthly categories in three consecutive months, is the most frequently occurring pattern in observation regardless of the seasons and variables. Meanwhile, the patterns (e.g., patterns 8 and 9) that have consistently increasing or decreasing trends in three consecutive months, such as BN-NN-AN or AN-NN-BN, occur rarely in observation. The MME and eight individual models generally capture pattern 7 well but rarely capture patterns 8 and 9.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.