• Title/Summary/Keyword: Determination tool

Search Result 546, Processing Time 0.035 seconds

Prediction of the remaining time and time interval of pebbles in pebble bed HTGRs aided by CNN via DEM datasets

  • Mengqi Wu;Xu Liu;Nan Gui;Xingtuan Yang;Jiyuan Tu;Shengyao Jiang;Qian Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.339-352
    • /
    • 2023
  • Prediction of the time-related traits of pebble flow inside pebble-bed HTGRs is of great significance for reactor operation and design. In this work, an image-driven approach with the aid of a convolutional neural network (CNN) is proposed to predict the remaining time of initially loaded pebbles and the time interval of paired flow images of the pebble bed. Two types of strategies are put forward: one is adding FC layers to the classic classification CNN models and using regression training, and the other is CNN-based deep expectation (DEX) by regarding the time prediction as a deep classification task followed by softmax expected value refinements. The current dataset is obtained from the discrete element method (DEM) simulations. Results show that the CNN-aided models generally make satisfactory predictions on the remaining time with the determination coefficient larger than 0.99. Among these models, the VGG19+DEX performs the best and its CumScore (proportion of test set with prediction error within 0.5s) can reach 0.939. Besides, the remaining time of additional test sets and new cases can also be well predicted, indicating good generalization ability of the model. In the task of predicting the time interval of image pairs, the VGG19+DEX model has also generated satisfactory results. Particularly, the trained model, with promising generalization ability, has demonstrated great potential in accurately and instantaneously predicting the traits of interest, without the need for additional computational intensive DEM simulations. Nevertheless, the issues of data diversity and model optimization need to be improved to achieve the full potential of the CNN-aided prediction tool.

Comparative analysis of water surface spectral characteristics based on hyperspectral images for chlorophyll-a estimation in Namyang estuarine reservoir and Baekje weir (남양호와 백제보의 Chlorophyll-a 산정을 위한 초분광 영상기반 수체분광특성 비교 분석)

  • Jang, Wonjin;Kim, Jinuk;Kim, Jinhwi;Nam, Guisook;Kang, Euetae;Park, Yongeun;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.91-101
    • /
    • 2023
  • In this study, we estimated the concentration of chlorophyll-a (Chl-a) using hyperspectral water surface reflectance in an inland weir (Baekjae weir) and estuarine reservoir (Namyang Reservoir) for monitoring the occurrence of algae in freshwater in South Korea. The hyperspectral reflectance was measured by aircraft in Baekjae Weir (BJW) from 2016 to 2017, and a drone in Namyang Reservoir (NYR) from 2020 to 2021. The 30 reflectance bands (BJW: 400-530, 620-680, 710-730, 760-790 nm, NYR: 400-430, 655-680, 740-800 nm) that were highly related to Chl-a concentration were selected using permutation importance. Artificial neural network based Chl-a estimation model was developed using the selected reflectance in both water bodies. And the performance of the model was evaluated with the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE). The performance evaluation results of the Chl-a estimation model for each watershed was R2: 0.63, 0.82, RMSE: 9.67, 6.99, and MAE: 11.25, 8.48, respectively. The developed Chl-a model of this study may be used as foundation tool for the optimal management of freshwater algal blooms in the future.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

Effect of Dam Operation on the Spatial Variability of Downstream Flow (댐운영에 따른 하류하천 유량의 공간적 변동성 평가)

  • Jeong Eun Lee;Jeongwoo Lee;Chul-gyum Kim;Il-moon Chung
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.627-638
    • /
    • 2023
  • This study aimed to evaluate the spatial variability of downstream river flow resulting from the operation of the Gimcheon Buhang Dam in the Gamcheon watershed. The dam's effects on flood reduction during the flood season and on increasing streamflow during the dry season-two main functions of multipurpose dams-were quantitatively analyzed. Streamflow data from 2013 to 2021 for the study waterhsed were simulated on a daily basis using SWAT-K (Soil and Water Assessment Tool - Korea) model. Comparison of the simulated and observed values found goodness of fit values of 0.75 or higher for both the coefficient of determination and the Nash-Sutcliffe model efficiency coefficient. The spatial analysis of the dam's effect on flood reduction focused on the annual maximum flood: rates of flood reduction at the four stations ranged from 8.5% to 25.0%. The evaluation of streamflow increase during times of low flow focused on flow duration curves: in particular, compared to the case without an upstream dam, the average low flow at the four sites increased from 33% to 198%.

Two-Dimensional Shear Wave Elastography Predicts Liver Fibrosis in Jaundiced Infants with Suspected Biliary Atresia: A Prospective Study

  • Huadong Chen;Luyao Zhou;Bing Liao;Qinghua Cao;Hong Jiang;Wenying Zhou;Guotao Wang;Xiaoyan Xie
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.959-969
    • /
    • 2021
  • Objective: This study aimed to evaluate the role of preoperative two-dimensional (2D) shear wave elastography (SWE) in assessing the stages of liver fibrosis in patients with suspected biliary atresia (BA) and compared its diagnostic performance with those of serum fibrosis biomarkers. Materials and Methods: This study was approved by the ethical committee, and written informed parental consent was obtained. Two hundred and sixteen patients were prospectively enrolled between January 2012 and October 2018. The 2D SWE measurements of 69 patients have been previously reported. 2D SWE measurements, serum fibrosis biomarkers, including fibrotic markers and biochemical test results, and liver histology parameters were obtained. 2D SWE values, serum biomarkers including, aspartate aminotransferase to platelet ratio index (APRi), and other serum fibrotic markers were correlated with the stages of liver fibrosis by METAVIR. Receiver operating characteristic (ROC) curves and area under the ROC (AUROC) curve analyses were used. Results: The correlation coefficient of 2D SWE value in correlation with the stages of liver fibrosis was 0.789 (p < 0.001). The cut-off values of 2D SWE were calculated as 9.1 kPa for F1, 11.6 kPa for F2, 13.0 kPa for F3, and 15.7 kPa for F4. The AUROCs of 2D SWE in the determination of the stages of liver fibrosis ranged from 0.869 to 0.941. The sensitivity and negative predictive value of 2D SWE in the diagnosis of ≥ F3 was 93.4% and 96.0%, respectively. The diagnostic performance of 2D SWE was superior to that of APRi and other serum fibrotic markers in predicting severe fibrosis and cirrhosis (all p < 0.005) and other serum biomarkers. Multivariate analysis showed that the 2D SWE value was the only statistically significant parameter for predicting liver fibrosis. Conclusion: 2D SWE is a more effective non-invasive tool for predicting the stage of liver fibrosis in patients with suspected BA, compared with serum fibrosis biomarkers.

Study on the screening method for determination of heavy metals in cellular phone for the restrictions on the use of certain hazardous substances (RoHS) (유해물질 규제법(RoHS)에 따른 휴대폰 내의 중금속 함유량 측정을 위한 스크리닝법 연구)

  • Kim, Y.H.;Lee, J.S.;Lim, H.B.
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • It is of importance that all countries in worldwide, including EU and China, have adopted the Restrictions on the use of certain Hazardous Substances (RoHS) for all electronics. IEC62321 document, which was published by the International Electronics Committee (IEC) can have conflicts with the standards in the market. On the contrary Publicly Accessible Specification (PAS) for sampling published by IEC TC111 can be adopted for complementary application. In this work, we tried to find a route to disassemble and disjoint cellular phone sample, based on PAS and compare the screening methods available in the market. For this work, the cellular phone produced in 2001, before the regulation was born, was chosen for better detection. Although X-ray Fluorescence (XRF) showed excellent performance for screening, fast and easy handling, it can give information on the surface, not the bulk, and have some limitations due to significant matrix interference and lack of variety of standards for quantification. It means that screening with XRF sometimes requires supplementary tool. There are several techniques available in the market of analytical instruments. Laser ablation (LA) ICP-MS, energy dispersive (ED) XRF and scanning electron microscope (SEM)-energy dispersive X-ray (EDX) were demonstrated for screening a cellular phone. For quantitative determination, graphite furnace atomic absorption spectrometry (GF-AAS) was employed. Experimental results for Pb in a battery showed large difference in analytical results in between XRF and GF-AAS, i.e., 0.92% and 5.67%, respectively. In addition, the standard deviation of XRF was extremely large in the range of 23-168%, compared with that in the range of 1.9-92.3% for LA-ICP-MS. In conclusion, GF-AAS was required for quantitative analysis although EDX was used for screening. In this work, it was proved that LA-ICP-MS can be used as a screening method for fast analysis to determine hazardous elements in electrical products.

Rapid Analysis of Nitrate Concentration in Different Growth Stages and Plant Parts of Paprika Leaf Using On-site Rapid Detection Kit (신속분석기기를 이용한 파프리카 생육단계 및 부위별 엽내 질산태질소 농도 신속분석)

  • Lee, Min Ji;Rhee, Han Cheol;Choi, Gyeong Lee;Oh, Sang Seok;Lee, Jae Taek;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.333-339
    • /
    • 2017
  • This research was aimed to establish rapid analysis technique for the determination of nitrate ($NO_3{^-}$) concentration in the leaves of paprika, which has key role for the stable vegetative and reproductive growth. Leaf petiole and blade sap of two paprika cultivars ('Raon red' and 'Raon yellow') were used for the determination of $NO_3{^-}$ concentration, separately using rapid detection kit (RQ-flex) and spectroscopy quantification methods. In addition, two paprika cultivars namely, 'Nicole' and 'TP2001' were used to determine the status of $NO_3{^-}$ concentration in leaf of each fruiting group. $NO_3{^-}$ concentration in leaf blade sap and the content in leaf showed significant correlation ($R^2=0.8628$), analysed by RQ-flex and spectroscopy methods, respectively. Furthermore, leaf petiole sap and the content in leaf also showed significant correlation ($R^2=0.6734$) but the relationship was poor compared to leaf blade sap and the leaf content. $NO_3{^-}$ concentration in petiole sap decreased in all the cultivars from early to late fruiting group. The higher concentration in the lower leaves and the continuous decrease towards the upper leaves in the both years were found through the analysis of $NO_3{^-}$ concentration in different leaf position. In addition, daily short-term fluctuation of $NO_3{^-}$ in petiole sap could be rapidly monitored. These results showed that long-term or short-term monitoring by test strip-based rapid analysis technique might be useful tool for the diagnosis of nutritional status for the stable of nutritional management in paprika.

The Interpretation of Korean Traditional Garden in the View of Complexity Theory - Focusing on Soswaewon Garden - ('복잡성(Complexity) 이론'에 의한 한국 전통정원의 해석 - 한국의 명원 소쇄원을 중심으로 -)

  • Jang, Il-Young;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.75-85
    • /
    • 2010
  • The purpose of this study is to attempt new analysis on Soswaewon Garden(瀟灑園) where is Korea's traditional garden, focusing on which the tendency of its change is a relational-formation tool similar to the Eastern Mode of Thought, with paying attention to conversion as the new view of world. Accordingly, the aim is to reanalyze by connecting with Soswaewon Garden based on the theory of complexity, which tries to look at the whole through relationship rather than characteristics in individual components. Given summarizing findings, those are as follows. First, it was found that complexity shown in space and open system of physical dimension was characterized by 'event(situation)', 'non-determination' and 'homogeneous relationships between part and whole', and a variety of techniques introduced the nature positively. In particular, it was found that there were many cases of topographic usage, since the Soswaewon Garden selected its construction site proactively and was a product from architectural works in compliance with a given flow of natural topography. This has a nature of open text in the situation of emergent behaviors. Second, it was found that complexity shown in experiences and open system on the invisible dimension was characterized primarily by 'event(situation)' and 'relationships of interactive response between actors and environment', and various techniques appeared as a space for interactive combination of nature and daily experiences. This is typical of bilateral harmony based on interactions between subject and object, and between mankind and nature, and becomes also a space to accommodate temporary emergent behaviors in our life. Third, the compositional elements are reconstituted as space of organic property with dismantling steady relations. Especially, 'Soswaewon Garden's 48 poems(瀟灑園四十八詠)' will be the origin of the emotionally spatial experience to the current performers. Ultimately, the performer in the space of Soswaewon Garden simultaneously becomes a creator of space, and will generate new space with intertextuality with environment. Therefore, Soswaewon Garden becomes a place of binding me and the other together while maintaining mutual relationship based on organic thinking between a human being and nature and between the whole and a part.

Assessment of future climate change impact on groundwater level behavior in Geum river basin using SWAT (SWAT을 이용한 미래기후변화에 따른 금강유역의 지하수위 거동 평가)

  • Lee, Ji Wan;Jung, Chung Gil;Kim, Da Rae;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.247-261
    • /
    • 2018
  • The purpose of this study is to evaluate the groundwater level behavior of Geum river basin ($9,645.5km^2$) under future climate change scenario projection periods (2020s: 2010~2039, 2050s: 2040~2069, 2080s: 2070~2099) using SWAT (Soil and Water Assessment Tool). Before future evaluation, the SWAT was calibrated and validated using 11 years (2005~2015) daily multi-purpose dam inflow at 2 locations (DCD, YDD), ground water level data at 5 locations (JSJS, OCCS, BEMR, CASS, BYBY), and three years (2012~2015) daily multi-function weir inflow at 3 locations (SJW, GJW, BJW). For the two dam inflow and dam storage, the Nash-Sutcliffe efficiency (NSE) was 0.57~0.67 and 0.87~0.94, and the coefficient of determination ($R^2$) was 0.69~0.73 and 0.63~0.73 respectively. For the three weir inflow and storage, the NSE was 0.68~0.70 and 0.94~0.99, and the $R^2$ was 0.83~0.86 and 0.48~0.61 respectively. The average $R^2$ for groundwater level was from 0.53 to 0.61. Under the future temperature increase of $4.3^{\circ}C$ and precipitation increase of 6.9% in 2080s (2070~2099) based on the historical periods (1976~2005) from HadGEM3-RA RCP 8.5 scenario, the future groundwater level shows decrease of -13.0 cm, -5.0 cm, -9.0 cm at 3 upstream locations (JSJS, OCCS, BEMR) and increase of +3.0 cm, +1.0 cm at 2 downstream locations (CASS, BYBY) respectively. The future groundwater level was directly affected by the groundwater recharge by the future seasonal spatial variation of rainfall in the watershed.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.