• Title/Summary/Keyword: Determination tool

Search Result 550, Processing Time 0.028 seconds

Evaluation of the Tank Model Optimized Parameter for Watershed Modeling (유역 유출량 추정을 위한 TANK 모형의 매개변수 최적화에 따른 적용성 평가)

  • Kim, Kye Ung;Song, Jung Hun;Ahn, Jihyun;Park, Jihoon;Jun, Sang Min;Song, Inhong;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.9-19
    • /
    • 2014
  • The objective of this study was to evaluate of the Tank model in simulating runoff discharge from rural watershed in comparison to the SWAT (Soil and Water Assessment Tool) model. The model parameters of SWAT was calibrated by the shuffled complex evolution-university Arizona (SCE-UA) method while Tank model was calibrated by genetic algorithm (GA) and validated. Four dam watersheds were selected as the study areas. Hydrological data of the Water Management Information System (WAMIS) and geological data were used as an input data for the model simulation. Runoff data were used for the model calibration and validation. The determination coefficient ($R^2$), root mean square error (RMSE), Nash-Sutcliffe efficiency index (NSE) were used to evaluate the model performances. The result indicated that both SWAT model and Tank model simulated runoff reasonably during calibration and validation period. For annual runoff, the Tank model tended to overestimate, especially for small runoff (< 0.2 mm) whereas SWAT model underestimate runoff as compared to observed data. The statistics indicated that the Tank model simulated runoff more accurately than the SWAT model. Therefore the Tank model could be a good tool for runoff simulation considering its ease of use.

Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique

  • Cho, Dae-Seung;Choi, Tae-Muk;Kim, Jin-Hyeong;Vladimir, Nikola
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.583-595
    • /
    • 2018
  • Stiffened panels are widely used in naval architecture and ocean engineering, and knowledge about their dynamic behaviour represents important issue in the design procedure. Ordinary vibration analysis consists of natural frequencies and mode shapes determination and can be extended to forced response assessment, while the Structural Intensity (SI) analysis, assessing magnitude and direction of vibrational energy flow provides information on dominant transmission paths and energy distribution including sink positions. In this paper, vibrational energy flow in stiffened panels under harmonic loading is analyzed by the SI technique employing the finite element method. Structural intensity formulation for plate and beam element is outlined, and developed system combining in-house code and general finite element tool is described. As confirmed within numerical examples, the developed tool enables separation of SI components, enabling generation of novel SI patterns and providing deeper insight in the vibrational energy flow in stiffened panels, comparing to existing works.

A Study on the Cutting Force and Machining Error on the Inclined Plane in Ball-end Milling (볼엔드밀에 의한 경사면 가공시 절삭력 및 가공 오차에 관한 연구)

  • Doo, Seung;Hong, Joo-Won;Suh, Nam-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.112-119
    • /
    • 2001
  • In modern manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are being designed and produced to meet various sophisticated functional specifications. The cutting force is required not only for the design of machine and cutting tools, but also for the determination of the cutting conditions for the various machining operations. The ball-end mill is deflected by the cutting force and, the tool deflection is one of the main reasons of the machining errors on a free-form surface. Hence, The cutting force generated in the ball-end milling is the most important property of the machining. The purpose of this study is to find the characteristics of the cutting force in inclined plane and the resultant machining errors in the ball-end milling process. Although the depth of cut is constant in the inclined plane, the cutting force area varies due to the hemisphere of the ball-end mill.

  • PDF

Determination of Reactive Power Compensation Considering Large Disturbances for Power Flow Solvability in the Korean Power System

  • Seo, Sang-Soo;Kang, Sang-Gyun;Lee, Byong-Jun;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • This paper proposes a methodology using a tool based on the branch-parameter continuation power flow (BCPF) in order to restore the power flow solvability in unsolvable contingencies. A specified contingency from a set of transmission line contingencies is modeled, considering the transient analysis and practice in the Korean power system. This tool traces a solution path that satisfies the power flow equations with respect to the variation of the branch parameter. At a critical point, in which the branch parameter can move on to a maximum value, a sensitivity analysis with a normal vector is performed to identify the most effective compensation. With the sensitivity information, the location of the reactive power compensation is determined and the effectiveness of the sensitivity information is verified to restore the solvability. In the simulation, the proposed framework is then applied to the Korean power system.

Implementation of Methodology & Tool for Communication Safety Guarantee in Railway System (철도시스템 통신 안전성 확보를 위한 방법 제시 및 도구 구현)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Kim, Yong-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • Safety-critical systems related to the railway communications are currently undergoing changes. Mechanical and electro-mechanical devices are being replaced by programmable electronics that are often controlled remotely via communication networks. Therefore designers and operators now not only have to contend with component failures and user errors, but also with the possibility that malicious entities are seeking to disrupt the services provided by theirs systems. Recognizing the safety-critical nature of the types of communications required in train control operations, the communications infrastructure will be required to meet a number of safety requirements such as system faults, user errors and the robustness in the presence of malicious attackers who are willing to take determined action to interfere in the correct operation of a system. In this paper, we proposed the safety strategies employed in the railway communications and a security mechanism for Korean railway communication system. Also, we presented the developed means for validation and determination of communication safety based on the proposed security mechanism in the railway system.

Investigation of the Thermal Mode-based Thermal Error Prediction for the Multi-heat Sources Model (다중열원모델의 열모드기반 열변위오차 예측)

  • Han, Jun An;Kim, Gyu Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.754-761
    • /
    • 2013
  • Thermal displacement is an important issue in machine tool systems. During the last several decades, thermal error compensation technology has significantly reduced thermal distortion error; this success has been attributed to the development of a precise, robust thermal error model. A major advantage of using the thermal error model is instant compensation for the control variables during the modeling process. However, successful application of thermal error modeling requires correct determination of the temperature sensor placement. In this paper, a procedure for predicting thermal-mode-based thermal error is introduced. Based on this thermal analysis, temperature sensors were positioned for multiple heat-source models. The performance of the sensors based on thermal-mode error analysis, was compared with conventional methods through simulation and experiments, for the case of a slide table in a transient state. Our results show that for predicting thermal error the proposed thermal model is more accurate than the conventional model.

Surface Roughness Prediction of Interrupted Cutting in SM45C Using Coated Tool (초경피복공구를 이용한 기계구조용 탄소강의 단속절삭시 표면거칠기 예측)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.77-82
    • /
    • 2014
  • In this study, we carried out the interrupted cutting of carbon steel for a machine structure (SM45C) with a CVD-coated tool and conducted an ANOVA test and a confidence interval analysis to find factors influence the surface roughness and to obtain a regression equation. We found that factor which mostly affects the surface roughness during interrupted cutting was the feed rate. The cutting speed and depth of the cut only had small effect on the surface roughness. From the result of a multi-regression analysis during an interrupted cutting experiment, we obtained regression equation. Its coefficient of determination was 0.918, indicating that the regression equation was predictable. Compared to continuous cutting, if the feed rate increases, the surface roughness will also increase during interrupted cutting.

Identification of Nursing Activities for Determination of Nursing Cost (간호수가 산정을 위한 간호행위의 규명 연구)

  • 박정호;황보수자;이은숙
    • Journal of Korean Academy of Nursing
    • /
    • v.22 no.2
    • /
    • pp.185-206
    • /
    • 1992
  • In this study nursing activities were examined to determine the nursing cost. A professional nursing group developed a tool for the investigation. 128 nursing activities were identified by the tool in 16 nursing care areas as referenced in the literature. Each activity was examined for four essential factors to define nursing cost ; time consumed for the care, level of professional skill, degree of independency and performer of the care. The activity was rated by a five point Likert scale. This investigation was conducted with the nursing staffing working in the 21 university hospitals in Korea and having more than four years experience especially in medical or surgical wards. The participating nursing staff were screened on the basic of the recommendation of the nursing director. The data were gathered from June 12th to August 12th, 1989. All the data were analyzed for mean, standard deviation, percent, and correlation coefficients between items. The results are summarized as follows : 1. Direct nursing care was classified into 16 large areas and 128 small activities. 2. No significant correlation was found between the study items of each activity. 3. Among 128 nursing activities, Those performed less than 50% of the time by a nurse were excluded from the nursing cost. Also excluded activities which were given less than 9 marks in all three items, time consumed, level of professional skill, and degree of independency. As a result, 83 activities in 14 nursing care areas were selected for the proposal to estimate nursing cost.

  • PDF

Optimum parameterization in grillage design under a worst point load

  • Kim Yun-Young;Ko Jae-Yang
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • The optimum grillage design belongs to nonlinear constrained optimization problem. The determination of beam scantlings for the grillage structure is a very crucial matter out of whole structural design process. The performance of optimization methods, based on penalty functions, is highly problem-dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm ($R{\mu}GA$) is proposed to find the optimum beam scantlings of the grillage structure without handling any of penalty functions. $R{\mu}GA$ can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. Direct stiffness method is used as a numerical tool for the grillage analysis. In optimization study to find minimum weight, sensitivity study is carried out with varying beam configurations. From the simulation results, it has been concluded that the proposed $R{\mu}GA$ is an effective optimization tool for solving continuous and/or discrete nonlinear real-world optimization problems.

Extract to Affected Factor to Surface Roughness and Regression Equation in Turning of Mold Steel(SKD61) by Whisker Reinforced Ceramic Tool (단침보강세라믹공구를 이용한 금형강(SKD61)의 선삭가공 시 표면거칠기에 영향을 미치는 인자 및 회귀방정식 도출)

  • Bae, Myung-Il;Rhie, Yi-Seon;Kim, Hyeung-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.118-124
    • /
    • 2012
  • In this study, we turning mold steel (SKD61) using whisker reinforced ceramic tool (WA1) to get affected factor to surface roughness and regression equation. For this study, we adapt system of experiments. Results are follows; From the analysis of variance, it was found that affected factor to surface roughness was feed rate, cutting speed, depth of cut in order. From multi-regression analysis, we calculated regression equation and the coefficient of determination($R^2$). $R^2$ was 0.978 and It means regression equation is significant. Regression equation means if feed rate increase 0.039mm/rev, surface roughness will increase $0.8391{\mu}m$, if cutting speed increase 50m/min, surface roughness will decrease $0.034{\mu}m$, if depth of cut increase 0.1mm, surface roughness will increase $0.0203{\mu}m$. From the experimental verification, it was confirmed that surface roughness was predictable by system of experiments.