• Title/Summary/Keyword: Deterioration diagnostic

Search Result 142, Processing Time 0.028 seconds

Deterioration Diagnostic Techniques for Power Facilities by Analyzing Pulse-Height of leakage current (누설전류 파고분석에 의한 전력설비의 열화진단 기술)

  • 한주섭;김명진;손원진;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.367-370
    • /
    • 2001
  • This paper proposes a new deterioration diagnostic technique for power facilities by analyzing the pulse-height analysis of leakage current. Until now, various deterioration diagnostic techniques to prevent power system failures by deterioration of power facilities are suggested, and most of which measures leakage current amplitude only as a estimation parameter. In this experiment, it is known that the pulse heights of the leakage current are increased according to deterioration progress as well as there comes remarkable changes in pulse height distribution thereto. Therefore, the use of pulse height distribution in deterioration diagnostic technique makes more accurate diagnosis than the conventional method by using only leakage current value. From the application test, it is confirmed that the proposed technique has sufficient performance to diagnose deterioration of power facilities.

  • PDF

Influence of System Voltage Harmonics on Arrester Deterioration Diagnostic Techniques by Leakage Current Measurement (누설전류측정에 의한 피뢰기 열화진단기술에 있어 전원고조파의 영향)

  • Kil, Gyung-Suk;Han, Joo-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.142-145
    • /
    • 2002
  • This paper describes an influence of system voltage harmonics on arrester deterioration diagnostic techniques based on leakage current measurement because the resistive current is composed of two components caused by nonlinear characteristics of arrester and by system voltage harmonics. Resistive leakage currents of arresters, which can be evaluated by the third harmonic component of total leakage currents, increase with its deterioration progress. In this paper, we developed a PSpice model for ZnO arrester to simulate the harmonics' effect described above. In simulation, pure sinusoidal voltage and the $3^{rd}$ harmonic voltage are applied to the model, and the leakage current changes are compared. The simulation results showed that the magnitudes of resistive leakage current depend not only on the phase of system voltage harmonics but also on the magnitude of it.

  • PDF

Assessment of Insulation Deterioration in Stator Windings of High Voltage Motor (고압전동기 고정자 권선의 절연열화 평가)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • To assess the insulation deterioration of stator windings, diagnostic and AC breakdown tests were performed on the eleven high voltage (HV) motors rated at 6kV. After completing the diagnostic tests, the AC overvoltage test was performed by gradually increasing the voltage applied to the stator windings until electrical insulation failure occurred, to obtain the breakdown voltage. Stator winding of motors 1, 3, and 8 failed at above rated voltage at 14 kV, 13.8kV, and 16.4kV, respectively. The breakdown voltage of three motors was higher than expected for good quality windings in 6kV motors. Based on deterioration evaluation criteria, the stator winding insulation of eleven HV motors are confirmed to be in good condition. The turning point of the current, $P_{i2}$, in the AC current vs. voltage characteristics occurred between 5kV and 6kV, and the breakdown voltage was low between 13.8kV and 16.4kV. There was a strong correlation between the breakdown voltage and various electrical characteristics in diagnostic tests including Pi2.

Diagnostic Test of XLPE Ultra High Voltage Electric Power Cable (XLPE 특고압 전력케이블의 절연 진단)

  • Byun, Doo-Gyoon;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.122-126
    • /
    • 2002
  • A diagnostic test of 15.4kV cross-linked polyethylene(XLPE) ultra high voltage power cables from generator in the Soyanggang hydro electric power plant was conducted over 3 months, beginning April 2001. According to the results, in the case of the power cables from generator 1, there was little possibility of proceeding rapid1y to failure or defect because the data from diagnosis doesn't indicate any failure, deterioration or partial discharge. However, in the case of the power cables from generator 2, the. polarization index show a slight abnormal condition of the insulator that is not severe, and the deterioration was also identified as not severe. However, the partial discharge had an abnormal condition which was severe.

  • PDF

Characteristics of Insulation Diagnosis and Failure in Gas Turbine Generator Stator Windings

  • Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.280-285
    • /
    • 2014
  • In order to evaluate the insulation deterioration in the stator windings of five gas turbine generators(137 MVA, 13.8 kV) which has been operated for more than 13 years, diagnostic test and AC dielectric breakdown test were performed at phases A, B and C. These tests included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B and C) of No. 1 generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable and bad level to the insulation condition. Overall analysis of the results suggested that the generator stator windings were indicated serious insulation deterioration and patterns of the PD in all three phases were analyzed to be internal, slot and spark discharges. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. The breakdown voltage at phases A, B and C of No. 1 generator stator windings failed at 28.0 kV, 17.9 kV, and 21.3 kV, respectively. The breakdown voltage was lower than that expected for good-quality windings (28.6 kV) in a 13.8kV class generator. In the AC dielectric breakdown and diagnostic tests, there was a strong correlation between the breakdown voltage and the voltage at which charging current increases abruptly ($P_{i1}$, $P_{i2}$).

Development of Fuzzy Inference-based Deterioration Diagnosis System Using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 퍼지추론 기반 열화진단 시스템 개발)

  • Choi, Woo-Yong;Kim, Jong-Bum;Oh, Sung-Kwun;Kim, Young-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.912-921
    • /
    • 2015
  • In this paper, we introduce fuzzy inference-based real-time deterioration diagnosis system with the aid of infrared thermal imaging camera. In the proposed system, the infrared thermal imaging camera monitors diagnostic field in real time and then checks state of deterioration at the same time. Temperature and variation of temperature obtained from the infrared thermal imaging camera variation are used as input variables. In addition to perform more efficient diagnosis, fuzzy inference algorithm is applied to the proposed system, and fuzzy rule is defined by If-then form and is expressed as lookup-table. While triangular membership function is used to estimate fuzzy set of input variables, that of output variable has singleton membership function. At last, state of deterioration in the present is determined based on output obtained through defuzzification. Experimental data acquired from deterioration generator and electric machinery are used in order to evaluate performance of the proposed system. And simulator is realized in order to confirm real-time state of diagnostic field

Estimation of Insulation Diagnosis and Dielectric Strength in 6.6 kV Motor Stator Windings (6.6 kV 전동기 고정자 권선의 절연진단과 절연내력 평가)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.780-785
    • /
    • 2014
  • To assess the deterioration condition of stator insulation, diagnostic and AC dielectric strength tests were performed on five high voltage (HV) motors (2,000 HP, 6.6 kV) for boiler feed-water pump (BFP). Two HV motors for BFP were installed per unit. Following the long term rewinding program, the diagnostic test was performed on five 6.6 kV motors during the planning maintenance period. After completing diagnostic test, AC dielectric strength test was done on the stator windings of HV motors. The AC dielectric strength test was conducted at 15 kV for one minute. Dielectric strength test and diagnostics test results confirmed that the stator insulation was judged to be in serviceable condition in the five 6.6 kV motors.

Diagnostic method of Insulation Deterioration for CV cable Using D.C. Potential Decay Components (직류전압 감쇄성분 측정에 관한 CV케이블의 절연열화 예측)

  • Yoo, Hyeong-Ho;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.323-328
    • /
    • 1989
  • In this paper, we studied the diagnostic method of insulation deterioration for 22.9kV CNCV cable using D.C potential decay component. At first, arbitrary D.C high voltage is appeied the CNCV cable for two minutes and switched off in vacuum. And then D.C potential decay components is measured for ten minutes. It is detecting source for cable insulation deterioration that its gradient is. Provisionally, we decided the criterion voltage and select the high voltage meter and S.W.

  • PDF

A Study on the Deterioration Diagnosis of 600V Shielded Twisted Pair Control/Measurement Cable using Resonance Frequency (케이블 공진을 이용한 600V 제어/계측용 꼬임쌍선 차폐 케이블의 열화상태 진단에 대한 연구)

  • Shin, JaeYoung;Kim, KwangHo;Nah, WanSoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1768-1775
    • /
    • 2015
  • Recent major domestic facilities, such as nuclear power plants, many control cables are installed and are degraded by long-term use, but research on deterioration diagnosis is lacking. In the event of a fault in the cable due to deterioration can be developed into a major accident such as the main plant is stopped, so the deterioration diagnostic techniques of high reliability for the cable is required. In this paper, proposes a methodology using a cable resonance that can effectively diagnose the deterioration of the cable. Prior to the test, we developed a setup for stable measuring the characteristics of the cable and it verified the suitable of the measurement set-up in terms of interactivity and reliability, also measured S-parameters applying verified measurement set-up to the cables that deterioration degree is different. Then, we had amplified the difference in resonance frequency between the healthy state and the deteriorated state using connection in a series of measured S-parameters. In a result from the method, we have verified that the more deteriorate the cables is, the more decrease the resonance frequency is. Measured results are justified by inducing the resonance frequency calculation of the cable from the S- parameters represented by the hyperbolic function formula. VNA(Vector Network Analyzer) for S-parameter measurements used in this study is Agilent E5061B and shielded twisted-pair cables was used for deterioration diagnostic test.

Diagnostic Technique and Device for Railway Arresters (철도용 피뢰기 진단기술 및 장치)

  • Kil Gyung-Suk;Han Ju-Seop;Jang Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1422-1424
    • /
    • 2004
  • Various deterioration diagnostic techniques and devices are suggested, and most of which measure leakage current components as an indicator of arrester ageing. However, the techniques based on the magnitude of leakage current measure simply RMS or peak value of leakage current components and do not provide detailed information needed in the diagnosis. In this study, we found that the phase vs. wave height of total leakage current is changed or a new wave height is produced with arrester ageing. To complete the new technique, we designed an arrester diagnostic device which is composed of a current detection circuit, an optical transmission circuit, and an analysis program. After measurement of the total leakage current, magnitudes, phase vs. wave height, and harmonics of the leakage current components are analyzed by the microprocessor based device. From the experimental results, we confirmed that the device can measure most parameters needed for the arrester diagnostics and analyze an initial deterioration state.

  • PDF