• Title/Summary/Keyword: Detergents

Search Result 234, Processing Time 0.023 seconds

Effect of Extraction Process on the Physicochemical Characteristics of Seed Oil of Camellia sinensis (추출 공정에 따른 Camellia sinensis 오일의 물리화학적 특성에 관한 연구)

  • Kim, Youn-Soon;Kim, Ran;Na, Myung-Soon;Choi, DuBok
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.148-153
    • /
    • 2010
  • This study was carried out to investigate the effect of extraction methods on the physicochemical characteristics using seed oil of wild green tea (Camellia sinensis). When the solvent extraction method after grinding and steam treatment (SGS) was used for oil extraction, the yield was highest. The specific gravity was a range of $0.91{\sim}0.94g/cm^{3}$ irrespective of extraction methods of oil. However, the light in the solvent extraction method after grinding (SG), the red in the pressure extraction method after grinding and roasting treatment (PGR), and the yellow in SG method were highest. Among various fatty acids, the concentrations of C16 : 0, C18 : 1 and C18 : 2 were highest, irrespective of extraction methods. Especially, the C16 : 0 concentration was in the order of SG (34.78%), SGS (23.04%), and PRGS method (23.01%), the C18 : 1 concentration was in the order of PGR (43.35%), SGS (42.7%), SG method (39.0%), and in the case of C18 : 2, it was in order of PGR (23.15%), SGS (23.03%), and SG method (15.01%). The saturated fatty acid concentration was in the order of SG (40.59%), PGR (31.61%), and SGS method (30.1%). On the other hand, in the case of the unsaturated fatty acid, it was in the order of SGS (69.9%), PGR (68.39%), and SG method (59.41%). The acid values in the SGS and SG method after 10 days of storage were in the range of 6~8 mgKOH/g. However, in the case of PGR method, it was increased with the increase of storage time and was 49.3 mgKOH/g after 60 days. The peroxide values in the SGS and SG method were in the range of 60~100 mEq/g from 10 to 60 days of storage. On the other hand, when the storage time was increased from 10 to 30 days, it was sharply increased from 60 to 240 mEq/g. The rancidity was in the order of $Fe^{2+}$, $Cu^{2+}$, $Cr^{2+}$, $Zn^{2+}$ and $Ni^{2+}$, irrespective of extraction methods. Especially, when butylated hydroxyanisole (BHA) was added into oil containing 1.0 ppm of <$Fe^{2+}$, the peroxide value was decreased from 539.4 to 216.6%. These results show that seed oil of Camellia sinensis grown in Iksan can be applied as sources for cosmetics, detergents, food, and pharmaceuticals.

Study on an Effective Decellularization Technique for Cardiac Valve, Arterial Wall and Pericardium Xenographs: Optimization of Decellularization (이종 심장 판막 및 대혈관 이식편과 심낭에서 효과적인 탈세포화 방법에 관한 연구: 탈세포화의 최적화)

  • Park, Chun-Soo;Kim, Yong-Jin;Sung, Si-Chan;Park, Ji-Eun;Choi, Sun-Young;Kim, Woong-Han;Kim, Kyung-Hwan
    • Journal of Chest Surgery
    • /
    • v.41 no.5
    • /
    • pp.550-562
    • /
    • 2008
  • Background: We attempted to reproduce a previously reported method that is known to be effective for decellularization, and we sought to find the optimal condition for decellularization by introducing some modifications to this method. Material and Method: Porcine semilunar valves, arterial walls and pericardium were processed for decellularization with using a variety of combinations and concentrations of decellularizing agents under different conditions of temperature, osmolarity and incubation time. The degree of decellularization and the preservation of the extracellular matrix were evaluated by staining with hematoxylin and eosin and with alpha-Gal and DAPI in some of the decellularized tissues. Result: Decellularization was achieved in the specimens that were treated with sodium deoxycholate, sodium dodesyl sulfate, Triton X-100 and sodium dodesyl sulfate with Triton X-100 as single-step methods, and this was also achieved in the specimens that were treated with hypotonic solution ${\rightarrow}$ Triton X-100 ${\rightarrow}$ sodium dodesyl sulfate, sodium deoxycholate ${\rightarrow}$ hypotonic solution ${\rightarrow}$ sodium dodesyl sulfate, and hypotonic solution sodium dodesyl sulfate as multi-step methods. Conclusion: Considering the number and the amount of the chemicals that were used, the incubation time and the degree of damage to the extracellular matrix, a single-step method with sodium dodesyl sulfate and Triton X-100 and a multi-step method with hypotonic solution followed by sodium dodesyl sulfate were both relatively optimal methods for decellularization in this study.

A Direction of the Monitoring of Household Chemical Products in Aquatic Environments: The Necessities for a Trophic Magnification Factor (TMF) Research on Fish (다양한 수생태계에 적용 가능한 유해물질의 영양확대계수 (trophic magnification factor, TMF) 연구 - 생활화학제품에서 기인한 성분과 어류조사를 중심으로)

  • Eun-Ji Won;Ha-Eun Cho;Dokyun Kim;Seongjin Hong;Kyung-Hoon Shin
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.3
    • /
    • pp.185-200
    • /
    • 2022
  • The risk of various hazardous substances in aquatic environment comprises not only the concentration of substances in the environmental medium but also their accumulation in fish through complex food web and the health risks to humans through the fish. In Korea, the monitoring of residual toxicant in aquatic ecosystems began in 2016 following the enforcement of the Acts on registration and evaluation for the management of chemicals used in daily life (consumer chemical products), and attention has been paid to potentially hazardous substances attributed to them. Recently, studies have been carried out to investigate the distribution of these hazardous substances in the ecosystem and calculate their emission factors. These include the accumulation and transport of substances, such as detergents, dyes, fragrances, cosmetics, and disinfectants, within trophic levels. This study summarizes the results of recently published research on the inflow and distribution of hazardous substances from consumer chemical products to the aquatic environment and presents the scientific implication. Based on studies on aquatic environment monitoring techniques, this study suggests research directions for monitoring the residual concentration and distribution of harmful chemical substances in aquatic ecosystems. In particular, this study introduces the directions for research on trophic position analysis using compound specific isotope analysis and trophic magnification factors, which are needed to fulfill the contemporary requirements of selecting target fish based on the survey of major fish that inhabit domestic waters and assessment of associated health risk. In addition, this study provides suggestions for future biota monitoring and chemical research in Korea.

A Study on an Effective Decellularization Technique for a Xenograft Cardiac Valve: the Effect of Osmotic Treatment with Hypotonic Solution (이종 심장 판막 이식편에서 효과적인 탈세포화 방법에 관한 연구; 저장성 용액(hypotonic solution)의 삼투압 처치법 효과)

  • Sung, Si-Chan;Kim, Yong-Jin;Choi, Sun-Young;Park, Ji-Eun;Kim, Kyung-Hwan;Kim, Woong-Han
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.679-686
    • /
    • 2008
  • Background: Cellular remnants in the bioprosthetic heart valve are known to be related to a host's immunologic response and they can form the nidus for calcification. The extracellular matrix of the decellularized valve tissue can also be used as a biological scaffold for cell attachment, endothelialization and tissue reconstitution. Thus, decellularization is the most important part in making a bioprosthetic valve and biological caffold. Many protocols and agents have been suggested for decellularization, yet there ave been few reports about the effect of a treatment with hypotonic solution prior to chemical or enzymatic treatment. This study investigated the effect of a treatment with hypotonic solution and the appropriate environments such as temperature, the treatment duration and the concentration of sodium dodecylsulfate (SDS) for achieving proper decellularization. Material and Method: Porcine aortic valves were decellularized with odium dodecylsulfate at various concentrations (0.25%, 0.5%), time durations (6, 12, 24 hours) and temperatures ($4^{\circ}C$, $20^{\circ}C$)(Group B). Same the number of porcine aortic valves (group A) was treated with hypotonic solution prior to SDS treatment at the same conditions. The duration of exposure to the hypotonic solution was 4, 7 and 14 hours and he temperature was $4^{\circ}C$ and $20^{\circ}C$, respectively. The degree of decellularization was analyzed by performing hematoxylin and eosin staining. Result: There were no differences in the degree of decellularization between the two concentrations (0.25% 0.5%) of SDS. Twenty four hours treatment with SDS revealed the best decellularization effect for both roups A and B at the temperature of $4^{\circ}C$, but there was no differences between the roups at $20^{\circ}C$. Treatment with hypotonic solution (group A) showed a better ecellularization effect at all the matched conditions. Fourteen hours treatment at $4^{\circ}C$ ith ypotonic solution prior to 80S treatment revealed the best decellularization effect. The treatment with hypotonic solution at $20^{\circ}C$ revealed a good decellularization effect, but his showed significant extracellular matrix destruction. Conclusion: The exposure of porcine heart valves to hypotonic solution prior to SDS treatment is highly effective for achieving decellularization. Osmotic treatment with hypotonic solution should be considered or achieving decellularization of porcine aortic valves. Further study should be carried out to see whether the treatment with hypotonic solution could reduce the exposure duration and concentration of chemical detergents, and also to evaluate how the structure of the extracellular matrix of the porcine valve is affected by the exposure to hypotonic solution.