Study on an Effective Decellularization Technique for Cardiac Valve, Arterial Wall and Pericardium Xenographs: Optimization of Decellularization

이종 심장 판막 및 대혈관 이식편과 심낭에서 효과적인 탈세포화 방법에 관한 연구: 탈세포화의 최적화

  • Park, Chun-Soo (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul Naitonal University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul Naitonal University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Sung, Si-Chan (Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University College of Medicine) ;
  • Park, Ji-Eun (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul Naitonal University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Choi, Sun-Young (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul Naitonal University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Kim, Woong-Han (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul Naitonal University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Kim, Kyung-Hwan (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul Naitonal University College of Medicine, Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center)
  • 박천수 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학 연구소, 바이오 이종장기개발사업단) ;
  • 김용진 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학 연구소, 바이오 이종장기개발사업단) ;
  • 성시찬 (부산대학교 의과대학 흉부외과학교실) ;
  • 박지은 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학 연구소, 바이오 이종장기개발사업단) ;
  • 최선영 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학 연구소, 바이오 이종장기개발사업단) ;
  • 김웅한 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학 연구소, 바이오 이종장기개발사업단) ;
  • 김경환 (서울대학교 의과대학 흉부외과학교실, 서울대학교병원 임상의학 연구소, 바이오 이종장기개발사업단)
  • Published : 2008.10.05

Abstract

Background: We attempted to reproduce a previously reported method that is known to be effective for decellularization, and we sought to find the optimal condition for decellularization by introducing some modifications to this method. Material and Method: Porcine semilunar valves, arterial walls and pericardium were processed for decellularization with using a variety of combinations and concentrations of decellularizing agents under different conditions of temperature, osmolarity and incubation time. The degree of decellularization and the preservation of the extracellular matrix were evaluated by staining with hematoxylin and eosin and with alpha-Gal and DAPI in some of the decellularized tissues. Result: Decellularization was achieved in the specimens that were treated with sodium deoxycholate, sodium dodesyl sulfate, Triton X-100 and sodium dodesyl sulfate with Triton X-100 as single-step methods, and this was also achieved in the specimens that were treated with hypotonic solution ${\rightarrow}$ Triton X-100 ${\rightarrow}$ sodium dodesyl sulfate, sodium deoxycholate ${\rightarrow}$ hypotonic solution ${\rightarrow}$ sodium dodesyl sulfate, and hypotonic solution sodium dodesyl sulfate as multi-step methods. Conclusion: Considering the number and the amount of the chemicals that were used, the incubation time and the degree of damage to the extracellular matrix, a single-step method with sodium dodesyl sulfate and Triton X-100 and a multi-step method with hypotonic solution followed by sodium dodesyl sulfate were both relatively optimal methods for decellularization in this study.

배경: 조직공학분야에서 이종조직의 세포성분에 대한 면역반응을 없애기 위한 기본적인 과정으로 조직의 탈세포화에 대한 연구가 있어왔다. 본 연구는 기존에 탈세포화에 효과적이었다고 보고되었던 방법들을 변형 혹은 재현해 보고, 이를 통해 치적의 탈세포화를 얻을 수 있는 조건을 찾고자 하였다. 대상 및 방법: 돼지의 대동맥 및 폐동맥판막, 대동맥 및 폐동맥벽, 심낭을 탈세포화 세정제(detergents)에 대한 농도 및 배양시간, 온도조건, 용질에 대한 삼투압 등을 달리하고, 여러 탈세포화용액 및 그 조합을 통해 단일단계 및 여러 단계의 방법으로 배양하여 탈세포화를 시행하였다. 이렇게 탈세포화 실험을 마친 조직은 hematoxylin-eosin (H&E) 염색을 통해 탈세포화의 정도와 세포 외 기질의 보존 정도를 평가하였고, 일부탈세포화된 조직에서는 이종항원면역제거 정도를 파악하는 alpha-Gal 염색과 DAPI 염색을 동시 시행하여 관찰하였다. 결과: Polyethylene glycol이나 peracetic acid를 이용한 방법에서는 탈세포화가 되지 않았다. 단일단계방법으로는 sodium deoxycholate (DOA), sodium dodesyl sulfate (SDS), Triton X-100, SDS와 Triton X-100을 섞은 용액에서, 다단계방법으로는 저장성 완충용액 ${\rightarrow}$ X-100 ${\rightarrow}$ SDS, DOA ${\rightarrow}$ 저장성 완충용액 ${\rightarrow}$ SDS, 저장성 완충용액 ${\rightarrow}$ SDS에서 탈세포화가 이루어 졌다. DOA는 다른 탈세포화 방법에 비해 세포 외 기질의 파괴가 심하였고, 특히 실험온도가 높아질 수록 세포 외 기질의 파괴가 더욱 현저함을 알 수 있었다. 사용되는 화학물질의 종류, 양, 처리시간 및 세포 외 기질의 파괴 정도를 고려하여 지속적으로 재현 가능한 탈세포화에 비교적 적합한 조합 및 조건은 단일단계방법으로 $4^{\circ}C$에서 SDS와 Triton X-100를 섞은 저장성용액에서 24시간 배양하는 방법과, 다단계방법으로 저장성 완충용액과 SDS를 연속적으로 사용하는 방법으로, $4^{\circ}C$에서 $6{\sim}8$시간 이상 저장성 완충용액에 처리한 후, 0.25% SDS가 섞인 저장성 완충용액에 16시간 배양 후 등장성 완충용액에 처리하는 방법이었다. 결론: $4^{\circ}C$에서 SDS 과 Triton X-100을 섞은 저장성 완충용액에서 24시간 배양하는 단일단계방법이나, 저장성완충용과 SDS를 연속적으로 사용하는 다단계 방법을 통해 세포 외 조직을 비교적 잘 보존하면서 적은 수의 탈세포화 용액을 사용하여 효과적인 탈세포화를 얻을 수 있었다.

Keywords

References

  1. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27:3675-83
  2. Uchimura E, Sawa Y, Taketani S, et al. Novel method of preparing acellular cardiovascular grafts by decellularization with poly (ethylene glycol). J Biomed Mater Res 2003;67: 834-7
  3. Freytes DO, Badylak SF, Webster TJ, Geddes LA, Rundell AE. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaerials 2004;25:2353-61 https://doi.org/10.1016/j.biomaterials.2003.09.015
  4. Hodde J, Record R, Tullius R, Badylak S. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 2002;23:1841-8 https://doi.org/10.1016/S0142-9612(01)00310-6
  5. Chen RN, Ho HO, Tsai YT, Sheu MT. Process development of an accellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004;25:2679-86 https://doi.org/10.1016/j.biomaterials.2003.09.070
  6. Hudson TW, Liu WY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 2004;10:1346-58 https://doi.org/10.1089/ten.2004.10.1346
  7. Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone- anterior cruciate ligament-bone graft. Biomaterials 2005;26: 7339-49 https://doi.org/10.1016/j.biomaterials.2005.05.066
  8. Lin P, Chan WC, Badylak SF, Bhatia SN. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 2004;10:1046-53 https://doi.org/10.1089/ten.2004.10.1046
  9. Hirsch D, Drader J, Thomas TJ, et al. Inhibition of calcification of glutaraldehyde pretreated porcine aortic valve cusps with sodium dodecyl sulfate: preincubation and controlled released studies. J Biomed Mater Res 1993;27: 1477-84 https://doi.org/10.1002/jbm.820271203
  10. Kasimir MT, Rieder E, Seebacher G, et al. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 2003;26:421-7 https://doi.org/10.1177/039139880302600508
  11. Wilcox HE, Korossis SA, Booth A, et al. Biocompatibility and recellularization potential of an acellular porcine heart valve matrix. J Heart Valve Dis 2005;14:228-37
  12. Booth C, Korossis SA, Wilcox HE, et al. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 2002;11:457-62
  13. Rieder E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004;127:399-405 https://doi.org/10.1016/j.jtcvs.2003.06.017
  14. Dahl SL, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 2003;12:659-66 https://doi.org/10.3727/000000003108747136
  15. Vesely I, Noseworthy R, Pringle G. The hybrid xenograft/ autograft bioprosthetic heart valve: in vivo evaluation of tissue extraction. Ann Thorac Surg 1995;60:359-64 https://doi.org/10.1016/0003-4975(95)00206-Z
  16. Galili U. The $\alpha$-gal epitope (Gal$\alpha$1-3Gal_1-4GlcNAc-R) in xenotransplantation. Biochimie 2001;83:557-63 https://doi.org/10.1016/S0300-9084(01)01294-9