Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.
International Journal of Internet, Broadcasting and Communication
/
제11권1호
/
pp.39-46
/
2019
This paper proposes an adaptive threshold watershed algorithm, which is the method used for image segmentation and boundary detection, which extends the region on the basis of regional minimum point. First, apply adaptive thresholds to determine regional minimum points. Second, it extends the region by applying adaptive thresholds based on determined regional minimum points. Traditional watershed algorithms create over-segmentation, resulting in the disadvantages of breaking boundaries between regions. These segmentation results mainly from the boundary of the object, creating an inaccurate region. To solve these problems, this paper applies an improved watershed algorithm applied with adaptive threshold in regional minimum point search and region expansion in order to reduce over-segmentation and breaking the boundary of region. This resulted in over-segmentation suppression and the result of having the boundary of precisely divided regions. The experimental results show that the proposed algorithm can apply adaptive thresholds to reduce the number of segmented regions and see that the segmented boundary parts are correct.
Viola와 Jones가 사용한 Haar-like 특징 기반 약분류기의 분별력을 개선하기 위하여, 2차 판별식에 기반한 판정 경계(decision boundary) 결정 방법을 제안한다. Viola와 Jones가 부스팅된 약분류기 앙상블을 사용해서 강분류기를 만들 때 사용한 단일 판정 경계 기반 약분류기는 특징 공간을 지나치게 단순하게 해석한 산물이어서 대부분의 경우 최적이 아니며, 객체 클래스와 배경 클래스 간을 효율적으로 분별하기에 흔히 너무 약하다. 이 논문에서 제안하는 2차 판별식 분석에 기반한 방법은 객체 클래스와 배경 클래스 사이에 다중 판정 경계를 사용하는 약분류기를 만들어준다. 1000개의 positive 샘플과 3000개의 negative 샘플을 훈련에 사용하고, 500개의 positive와 500개의 negative를 테스트에 사용한 차량 검출 실험을 통해서, 기존의 단일 문턱치 기반 약분류기 방식에 비해, 제안 기법이 더 적은 수의 분류기를 사용하면서도 더 우수한 분류 성능을 제공하는 것을 확인하였다.
비디오 객체 분할은 MPEG-4와 같은 객체기반 비디오 코딩을 위한 중요한 구성 요소이다. 본논문은 비디오 시퀸스에서 움직임 객체 분할을 위한 새로운 알고리즘과 VOP(Video Object Plane)추출 방법을 소개한다. 본 논문의 핵심은 시간적으로 변하는 움직임 객체 에지와 공간적 객체 에지 검출 결과를 효율적으로 조합하여 정확한 객체 경계를 추출하는 것이다. 이후 추출된 에지를 통하여 VOP를 생성한다. 본 알고리즘은 첫 번째 프레임을 기준영상으로 설정한 후 두 개의 연속된 프레임 사이의 움직임 픽셀 차이 값으로부터 시작된다. 차이영상을 추출한 후 차이영상에 Canny 에지 연산과 수리형태 녹임 연산(erosion)을 적용하고, 다음 프레임의 영상에 Canny 에지 연산과 수리형태 녹임 연산을 적용하여 두 프레임 사이의 에지 비교를 통하여 정확한 움직임 객체 경계를 추출한다. 이 과정에서 수리형태학 녹임 연산은 잘못된 객체 에지의 검출을 방지하는 작용을 한다. 두 영상 사이의 정확한 움직임 객체 에지(moving object edge)는 에지 크기를 조절하여 생성한다. 본 알고리즘은 픽셀 범위까지 고려한 정화한 객체의 경계를 얻음으로서 매우 쉬운 구현과 빠른 객체 추출을 보였다.
Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.
본 논문에서는 뉴스 비디오에서 앵커 프레임 검출을 위한 알고리즘을 제안한다. 제안된 알고리즘은 다음과 같이 4단계로 구성된다. 첫 번째 단계에서, 뉴스 비디오를 비디오 샷들로 분할하기 위해 누적 히스토그램(cumulative histogram) 기법을 이용하여 샷 경계(shot boundary)를 검출한다. 두 번째 단계에서는 각 비디오 샷 경계에서 얼굴 영역들을 찾기 위해서 피부 컬러(skin color) 정보를 이용하고, 세 번째 단계에서는, 앵커 객체를 추출하기 위해서 사람의 상체 부분의 컬러 정보를 이용하여 앵커 후보 프레임을 검출하며, 마지막 단계에서, 후보 프레임들에 대해서 앵커 프레임과 비앵커 프레임을 분류하기 위해서 그래프 이론을 이용한 클러스터 분석 알고리즘을 적용한다. 실험 결과를 통해서 제안한 알고리즘이 효과적으로 앵커 프레임을 검출하는 것을 보여준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권3호
/
pp.1264-1286
/
2018
In this paper, a novel background prior-based salient object detection framework is proposed to deal with images those are more complicated. We take the superpixels located in four borders into consideration and exploit a mechanism based on image boundary information to remove the foreground noises, which are used to form the background prior. Afterward, an initial foreground prior is obtained by selecting superpixels that are the most dissimilar to the background prior. To determine the regions of foreground and background based on the prior of them, a threshold is needed in this process. According to a fixed threshold, the remaining superpixels are iteratively assigned based on their proximity to the foreground or background prior. As the threshold changes, different foreground priors generate multiple different partitions that are assigned a likelihood of being foreground. Last, all segments are combined into a saliency map based on the idea of similarity voting. Experiments on five benchmark databases demonstrate the proposed method performs well when it compares with the state-of-the-art methods in terms of accuracy and robustness.
일반적으로 배경과 물체의 경계 부분은 화소값이 급격히 변화하는 지점이며, 영상의 특징을 분석함에 있어서 중요한 요소이다. 이러한 경계 부분을 이용하여 영상 내에서 물체의 위치나 모양에 대한 정보를 검출하며, 이를 위한 많은 연구들이 이루어져 왔다. 기존의 방법들은 구현이 비교적 간단하며 처리 속도가 빠른 반면, 고정된 가중치가 모든 화소에 동일하게 적용되므로 에지 검출 특성이 다소 미흡하다. 따라서 본 논문에서는 영상에 따라 적응하는 에지 검출을 위하여 마스크의 영역 분할을 이용한 에지 검출 알고리즘을 제안하였으며, 제안한 알고리즘에 의한 처리 결과는 에지 영역에서 우수한 에지 검출 특성을 나타내었다.
본 연구는 입력된 영상으로부터 특정한 형태를 이루고 있는 대상 물체를 추출함에 있어, 처리에 소요되는 시간 비용(Time cost)을 줄이는 것을 목적으로 하고 있다. 이를 위하여 특정 관심 지역(Region of Interest)이나 대상 물체(Tareet object)의 경계 검출(Boundary detection)을 하는 과정에 통계학적 수치자료(SSM : Statistical Shape Model)를 사용한 접근법을 이용하였다. 또한, 향후 연구 방향인 의료 영상해석(Medical image analysis)으로의 확장성을 고려, 의료 영상 해석에 많이 사용되어지는 MRI, CT, X-Ray 이미지가 Gray level 영상이라는 것을 감안하여 Gray level 영상을 연구 대상으로 삼았다.
말벌 종은 모양이 매우 유사하기 때문에 비전문가가 분류하기 어렵고, 객체의 크기가 작고 빠르게 움직이기 때문에 실시간으로 탐지하여 종을 분류하는 것은 더욱 어렵다. 본 논문에서는 바운딩 박스를 이용한 딥러닝 알고리즘을 기반으로 말벌 종을 실시간으로 분류하는 시스템을 개발하였다. 훈련 영상의 레이블링 작업 시 바운딩 박스 안에 포함되는 배경 영역을 최소화하기 위하여 말벌의 머리와 몸통 부분만을 선택하는 방법을 제안한다. 또한 실시간으로 말벌을 탐지하고 그 종을 분류할 수 있는 최선의 알고리즘을 찾기 위하여 기존의 바운딩 박스 기반 객체 인식 알고리즘들을 실험을 통하여 비교한다. 실험 결과 컨볼루션 레이어의 활성함수로 mish 함수를 적용하고, 객체 검출 블록 전에 공간집중모듈(Spatial Attention Module, SAM)을 적용한 YOLOv4 모델을 사용하여 말벌 영상을 테스트한 경우 평균 97.89%의 정밀도(Precision)와 98.69%의 재현율(Recall)을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.