• 제목/요약/키워드: Detection of Object Boundary

검색결과 111건 처리시간 0.04초

복잡한 배경에서 움직이는 물체의 영역분할에 관한 연구 (A Segmentation Method for a Moving Object on A Static Complex Background Scene.)

  • 박상민;권희웅;김동성;정규식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.321-329
    • /
    • 1999
  • Moving Object segmentation extracts an interested moving object on a consecutive image frames, and has been used for factory automation, autonomous navigation, video surveillance, and VOP(Video Object Plane) detection in a MPEG-4 method. This paper proposes new segmentation method using difference images are calculated with three consecutive input image frames, and used to calculate both coarse object area(AI) and it's movement area(OI). An AI is extracted by removing background using background area projection(BAP). Missing parts in the AI is recovered with help of the OI. Boundary information of the OI confines missing parts of the object and gives inital curves for active contour optimization. The optimized contours in addition to the AI make the boundaries of the moving object. Experimental results of a fast moving object on a complex background scene are included.

  • PDF

The Image Segmentation Method using Adaptive Watershed Algorithm for Region Boundary Preservation

  • Kwon, Dong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권1호
    • /
    • pp.39-46
    • /
    • 2019
  • This paper proposes an adaptive threshold watershed algorithm, which is the method used for image segmentation and boundary detection, which extends the region on the basis of regional minimum point. First, apply adaptive thresholds to determine regional minimum points. Second, it extends the region by applying adaptive thresholds based on determined regional minimum points. Traditional watershed algorithms create over-segmentation, resulting in the disadvantages of breaking boundaries between regions. These segmentation results mainly from the boundary of the object, creating an inaccurate region. To solve these problems, this paper applies an improved watershed algorithm applied with adaptive threshold in regional minimum point search and region expansion in order to reduce over-segmentation and breaking the boundary of region. This resulted in over-segmentation suppression and the result of having the boundary of precisely divided regions. The experimental results show that the proposed algorithm can apply adaptive thresholds to reduce the number of segmented regions and see that the segmented boundary parts are correct.

판별 함수를 이용한 문턱치 선정에 의한 약분류기 개선 (Improving Weak Classifiers by Using Discriminant Function in Selecting Threshold Values)

  • 샴 아디카리;유현중;김형석
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.84-90
    • /
    • 2010
  • Viola와 Jones가 사용한 Haar-like 특징 기반 약분류기의 분별력을 개선하기 위하여, 2차 판별식에 기반한 판정 경계(decision boundary) 결정 방법을 제안한다. Viola와 Jones가 부스팅된 약분류기 앙상블을 사용해서 강분류기를 만들 때 사용한 단일 판정 경계 기반 약분류기는 특징 공간을 지나치게 단순하게 해석한 산물이어서 대부분의 경우 최적이 아니며, 객체 클래스와 배경 클래스 간을 효율적으로 분별하기에 흔히 너무 약하다. 이 논문에서 제안하는 2차 판별식 분석에 기반한 방법은 객체 클래스와 배경 클래스 사이에 다중 판정 경계를 사용하는 약분류기를 만들어준다. 1000개의 positive 샘플과 3000개의 negative 샘플을 훈련에 사용하고, 500개의 positive와 500개의 negative를 테스트에 사용한 차량 검출 실험을 통해서, 기존의 단일 문턱치 기반 약분류기 방식에 비해, 제안 기법이 더 적은 수의 분류기를 사용하면서도 더 우수한 분류 성능을 제공하는 것을 확인하였다.

비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘 (A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences)

  • 김준기;이호석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.430-441
    • /
    • 2002
  • 비디오 객체 분할은 MPEG-4와 같은 객체기반 비디오 코딩을 위한 중요한 구성 요소이다. 본논문은 비디오 시퀸스에서 움직임 객체 분할을 위한 새로운 알고리즘과 VOP(Video Object Plane)추출 방법을 소개한다. 본 논문의 핵심은 시간적으로 변하는 움직임 객체 에지와 공간적 객체 에지 검출 결과를 효율적으로 조합하여 정확한 객체 경계를 추출하는 것이다. 이후 추출된 에지를 통하여 VOP를 생성한다. 본 알고리즘은 첫 번째 프레임을 기준영상으로 설정한 후 두 개의 연속된 프레임 사이의 움직임 픽셀 차이 값으로부터 시작된다. 차이영상을 추출한 후 차이영상에 Canny 에지 연산과 수리형태 녹임 연산(erosion)을 적용하고, 다음 프레임의 영상에 Canny 에지 연산과 수리형태 녹임 연산을 적용하여 두 프레임 사이의 에지 비교를 통하여 정확한 움직임 객체 경계를 추출한다. 이 과정에서 수리형태학 녹임 연산은 잘못된 객체 에지의 검출을 방지하는 작용을 한다. 두 영상 사이의 정확한 움직임 객체 에지(moving object edge)는 에지 크기를 조절하여 생성한다. 본 알고리즘은 픽셀 범위까지 고려한 정화한 객체의 경계를 얻음으로서 매우 쉬운 구현과 빠른 객체 추출을 보였다.

Detection of Pulmonary Region in Medical Images through Improved Active Control Model

  • Kwon Yong-Jun;Won Chul-Ho;Kim Dong-Hun;Kim Pil-Un;Park Il-Yong;Park Hee-Jun;Lee Jyung-Hyun;Kim Myoung-Nam;Cho Jin-HO
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권6호
    • /
    • pp.357-363
    • /
    • 2005
  • Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.

앵커 객체 추출을 이용한 앵커 프레임 검출 (Anchor Frame Detection Using Anchor Object Extraction)

  • 박기태;황두선;문영식
    • 대한전자공학회논문지SP
    • /
    • 제43권3호
    • /
    • pp.17-24
    • /
    • 2006
  • 본 논문에서는 뉴스 비디오에서 앵커 프레임 검출을 위한 알고리즘을 제안한다. 제안된 알고리즘은 다음과 같이 4단계로 구성된다. 첫 번째 단계에서, 뉴스 비디오를 비디오 샷들로 분할하기 위해 누적 히스토그램(cumulative histogram) 기법을 이용하여 샷 경계(shot boundary)를 검출한다. 두 번째 단계에서는 각 비디오 샷 경계에서 얼굴 영역들을 찾기 위해서 피부 컬러(skin color) 정보를 이용하고, 세 번째 단계에서는, 앵커 객체를 추출하기 위해서 사람의 상체 부분의 컬러 정보를 이용하여 앵커 후보 프레임을 검출하며, 마지막 단계에서, 후보 프레임들에 대해서 앵커 프레임과 비앵커 프레임을 분류하기 위해서 그래프 이론을 이용한 클러스터 분석 알고리즘을 적용한다. 실험 결과를 통해서 제안한 알고리즘이 효과적으로 앵커 프레임을 검출하는 것을 보여준다.

Background Prior-based Salient Object Detection via Adaptive Figure-Ground Classification

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng;Lu, Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1264-1286
    • /
    • 2018
  • In this paper, a novel background prior-based salient object detection framework is proposed to deal with images those are more complicated. We take the superpixels located in four borders into consideration and exploit a mechanism based on image boundary information to remove the foreground noises, which are used to form the background prior. Afterward, an initial foreground prior is obtained by selecting superpixels that are the most dissimilar to the background prior. To determine the regions of foreground and background based on the prior of them, a threshold is needed in this process. According to a fixed threshold, the remaining superpixels are iteratively assigned based on their proximity to the foreground or background prior. As the threshold changes, different foreground priors generate multiple different partitions that are assigned a likelihood of being foreground. Last, all segments are combined into a saliency map based on the idea of similarity voting. Experiments on five benchmark databases demonstrate the proposed method performs well when it compares with the state-of-the-art methods in terms of accuracy and robustness.

마스크의 영역 분할을 이용한 에지 검출에 관한 연구 (A Study on the Edge Detection using Region Segmentation of the Mask)

  • 이창영;김남호
    • 한국정보통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.718-723
    • /
    • 2013
  • 일반적으로 배경과 물체의 경계 부분은 화소값이 급격히 변화하는 지점이며, 영상의 특징을 분석함에 있어서 중요한 요소이다. 이러한 경계 부분을 이용하여 영상 내에서 물체의 위치나 모양에 대한 정보를 검출하며, 이를 위한 많은 연구들이 이루어져 왔다. 기존의 방법들은 구현이 비교적 간단하며 처리 속도가 빠른 반면, 고정된 가중치가 모든 화소에 동일하게 적용되므로 에지 검출 특성이 다소 미흡하다. 따라서 본 논문에서는 영상에 따라 적응하는 에지 검출을 위하여 마스크의 영역 분할을 이용한 에지 검출 알고리즘을 제안하였으며, 제안한 알고리즘에 의한 처리 결과는 에지 영역에서 우수한 에지 검출 특성을 나타내었다.

통계 지식 기반(SSM)에서 대상 물체의 경계 검출기 설계 (Designing boundary detector of the object on SSM)

  • 유상진;박종구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.511-514
    • /
    • 2003
  • 본 연구는 입력된 영상으로부터 특정한 형태를 이루고 있는 대상 물체를 추출함에 있어, 처리에 소요되는 시간 비용(Time cost)을 줄이는 것을 목적으로 하고 있다. 이를 위하여 특정 관심 지역(Region of Interest)이나 대상 물체(Tareet object)의 경계 검출(Boundary detection)을 하는 과정에 통계학적 수치자료(SSM : Statistical Shape Model)를 사용한 접근법을 이용하였다. 또한, 향후 연구 방향인 의료 영상해석(Medical image analysis)으로의 확장성을 고려, 의료 영상 해석에 많이 사용되어지는 MRI, CT, X-Ray 이미지가 Gray level 영상이라는 것을 감안하여 Gray level 영상을 연구 대상으로 삼았다.

  • PDF

딥러닝을 이용한 실시간 말벌 분류 시스템 (Real Time Hornet Classification System Based on Deep Learning)

  • 정윤주;이영학;이스라필 안사리;이철희
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1141-1147
    • /
    • 2020
  • 말벌 종은 모양이 매우 유사하기 때문에 비전문가가 분류하기 어렵고, 객체의 크기가 작고 빠르게 움직이기 때문에 실시간으로 탐지하여 종을 분류하는 것은 더욱 어렵다. 본 논문에서는 바운딩 박스를 이용한 딥러닝 알고리즘을 기반으로 말벌 종을 실시간으로 분류하는 시스템을 개발하였다. 훈련 영상의 레이블링 작업 시 바운딩 박스 안에 포함되는 배경 영역을 최소화하기 위하여 말벌의 머리와 몸통 부분만을 선택하는 방법을 제안한다. 또한 실시간으로 말벌을 탐지하고 그 종을 분류할 수 있는 최선의 알고리즘을 찾기 위하여 기존의 바운딩 박스 기반 객체 인식 알고리즘들을 실험을 통하여 비교한다. 실험 결과 컨볼루션 레이어의 활성함수로 mish 함수를 적용하고, 객체 검출 블록 전에 공간집중모듈(Spatial Attention Module, SAM)을 적용한 YOLOv4 모델을 사용하여 말벌 영상을 테스트한 경우 평균 97.89%의 정밀도(Precision)와 98.69%의 재현율(Recall)을 나타내었다.