• 제목/요약/키워드: Detection of Facial Region

검색결과 116건 처리시간 0.027초

A Study on Detecting Glasses in Facial Image

  • Jung, Sung-Gi;Paik, Doo-Won;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권12호
    • /
    • pp.21-28
    • /
    • 2015
  • In this paper, we propose a method of glasses detection in facial image. we develop a detection method of glasses with a weighted sum of the results that detected by facial element detection and glasses frame candidate region. Component of the face detection method detects the glasses, by defining the detection probability of the glasses according to the detection of a face component. Method using the candidate region of the glasses frame detects the glasses, by defining feature of the glasses frame in the candidate region. finally, The results of the combined weight of both methods are obtained. The proposed method in this paper is expected to increase security system's recognition on facial accessories by raising detection performance of glasses or sunglasses for using ATM.

동영상에서 얼굴의 주색상 밝기 분포를 이용한 실시간 얼굴영역 검출기법 (Using Analysis of Major Color Component facial region detection algorithm for real-time image)

  • 최미영;김계영;최형일
    • 디지털콘텐츠학회 논문지
    • /
    • 제8권3호
    • /
    • pp.329-339
    • /
    • 2007
  • 본 논문은 연속적으로 입력되는 동영상에서 시공간 정보를 이용하여 다양한 조명환경에서도 실시간 적용이 가능한 얼굴영역 검출기법을 제안한다. 제안한 알고리즘은 연속된 두개의 연속 영상에서 에지 차영상을 구하고 연속적으로 입력되는 영상과의 차분 누적영상을 통해 초기 얼굴영역을 검출한다. 초기 얼굴영역으로부터 외부 조명의 영향을 없애기 위해, 검출된 초기 얼굴영역의 수평 프로파일을 이용하여 수직 방향으로 객체영역을 이분하며, 각각의 객체영역에 관해 주색상 밝기를 구한다. 배경과 잡음 성분을 제거한 후, 분할된 얼굴영역을 통합한 주색상 밝기 분포를 이용하여 타원으로 근사화 함으로써 정확한 얼굴의 기울기와 영역을 실시간으로 계산한다. 제안된 방법은 다양한 조명조건에서 얻어진 동영상을 이용하여 실험되었으며 얼굴의 좌 우 기울기가 $30^{\circ}$이하에서 우수한 얼굴영역 검출 성능을 보였다.

  • PDF

Harris Corner Detection for Eyes Detection in Facial Images

  • Navastara, Dini Adni;Koo, Kyung-Mo;Park, Hyun-Jun;Cha, Eui-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.373-376
    • /
    • 2013
  • Nowadays, eyes detection is required and considered as the most important step in several applications, such as eye tracking, face identification and recognition, facial expression analysis and iris detection. This paper presents the eyes detection in facial images using Harris corner detection. Firstly, Haar-like features for face detection is used to detect a face region in an image. To separate the region of the eyes from a whole face region, the projection function is applied in this paper. At the last step, Harris corner detection is used to detect the eyes location. In experimental results, the eyes location on both grayscale and color facial images were detected accurately and effectively.

  • PDF

칼라 참조 맵과 움직임 정보를 이용한 얼굴영역 추출 (Facial region Extraction using Skin-color reference map and Motion Information)

  • 이병석;이동규;이두수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.139-142
    • /
    • 2001
  • This paper presents a highly fast and accurate facial region extraction method by using the skin-color-reference map and motion information. First, we construct the robust skin-color-reference map and eliminate the background in image by this map. Additionally, we use the motion information for accurate and fast detection of facial region in image sequences. Then we further apply region growing in the remaining areas with the aid of proposed criteria. The simulation results show the improvement in execution time and accurate detection.

  • PDF

METHODS OF EYEBROW REGION EXTRACRION AND MOUTH DETECTION FOR FACIAL CARICATURING SYSTEM PICASSO-2 EXHIBITED AT EXPO2005

  • Tokuda, Naoya;Fujiwara, Takayuki;Funahashi, Takuma;Koshimizu, Hiroyasu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.425-428
    • /
    • 2009
  • We have researched and developed the caricature generation system PICASSO. PICASSO outputs the deformed facial caricature by comparing input face with prepared mean face. We specialized it as PICASSO-2 for exhibiting a robot at Aichi EXPO2005. This robot enforced by PICASSO-2 drew a facial caricature on the shrimp rice cracker with the laser pen. We have been recently exhibiting another revised robot characterized by a brush drawing. This system takes a couple of facial images with CCD camera, extracts the facial features from the images, and generates the facial caricature in real time. We experimentally evaluated the performance of the caricatures using a lot of data taken in Aichi EXPO2005. As a result it was obvious that this system were not sufficient in accuracy of eyebrow region extraction and mouth detection. In this paper, we propose the improved methods for eyebrow region extraction and mouth detection.

  • PDF

방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출 (Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP))

  • 이희재;김하영;이다빛;이상국
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.692-702
    • /
    • 2017
  • LBP기반 특징점 기술자를 이용한 얼굴검출은 얼굴의 형태정보 및 눈, 코, 입과 같은 얼굴 요소들 간 공간정보를 표현할 수 없는 문제가 있다. 이러한 문제를 해결하기 위해 선행 연구들은 얼굴 영상을 다수개의 사각형 부분영역들로 분할하였다. 하지만, 연구마다 서로 다른 개수와 크기로 부분 영역을 분할하였기 때문에 실험에 사용하는 데이터베이스에 적합한 부분 영역의 분할 기준이 모호하며, 부분 영역의 수에 비례하여 LBP 히스토그램 차원이 증가되고, 부분 영역의 개수가 증가함에 따라 얼굴의 방향 회전에 대한 민감도가 크게 증가한다. 본 논문은 LBP기반 특징점 기술자의 방향 회전 문제와 특징점 차원의 수 문제를 해결할 수 있는 새로운 부분 영역 분할 방법을 제안한다. 실험 결과, 제안하는 방법은 방향 회전된 단일 얼굴 영상에서 99.0278%의 검출 정확도를 보였다.

색 정보와 기하학적 위치관계를 이용한 얼굴 특징점 검출 (Detection of Facial Features Using Color and Facial Geometry)

  • 정상현;문인혁
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.57-60
    • /
    • 2002
  • Facial features are often used for human computer interface(HCI). This paper proposes a method to detect facial features using color and facial geometry information. Face region is first extracted by using color information, and then the pupils are detected by applying a separability filter and facial geometry constraints. Mouth is also extracted from Cr(coded red) component. Experimental results shows that the proposed detection method is robust to a wide range of facial variation in position, scale, color and gaze.

  • PDF

색상요소를 고려한 얼굴검출에 대한 연구 (A study of face detection using color component)

  • 이정하;강진석;최연성;김장형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.240-243
    • /
    • 2002
  • 본 논문에서는 칼라 이미지에서 색상 요소를 기초로 하여 얼굴영역을 추출하고 얼굴의 특징요소를 추출하는 방법을 제안한다. 얼굴 영역을 추출하기 위하여 일반적인 얼굴색상분포를 이용하여 색상변환을 하였다. 얼굴 특성요소를 찾기 위하여 윤곽선검출을 이용하였다. 얼굴영역의 상단부분에서 눈의 요소를 찾고, 눈과 입의 지정학적 위치를 이용하여 입의 후보영역을 지정하고 입을 찾도록 하였다. 검색영역을 좁혀 계산량을 줄임으로서 탐색시간을 줄일 수 있고, 일반적인 얼굴색상분포를 이용하여 얼굴 영역을 검출함으로서 얼굴표정, 얼굴색변화, 기울짐에 대해서도 얼굴영역을 검출할 수 있었다.

  • PDF

DETECTION OF FACIAL FEATURES IN COLOR IMAGES WITH VARIOUS BACKGROUNDS AND FACE POSES

  • Park, Jae-Young;Kim, Nak-Bin
    • 한국멀티미디어학회논문지
    • /
    • 제6권4호
    • /
    • pp.594-600
    • /
    • 2003
  • In this paper, we propose a detection method for facial features in color images with various backgrounds and face poses. To begin with, the proposed method extracts face candidacy region from images with various backgrounds, which have skin-tone color and complex objects, via the color and edge information of face. And then, by using the elliptical shape property of face, we correct a rotation, scale, and tilt of face region caused by various poses of head. Finally, we verify the face using features of face and detect facial features. In our experimental results, it is shown that accuracy of detection is high and the proposed method can be used in pose-invariant face recognition system effectively

  • PDF

Emotion Detection Algorithm Using Frontal Face Image

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2373-2378
    • /
    • 2005
  • An emotion detection algorithm using frontal facial image is presented in this paper. The algorithm is composed of three main stages: image processing stage and facial feature extraction stage, and emotion detection stage. In image processing stage, the face region and facial component is extracted by using fuzzy color filter, virtual face model, and histogram analysis method. The features for emotion detection are extracted from facial component in facial feature extraction stage. In emotion detection stage, the fuzzy classifier is adopted to recognize emotion from extracted features. It is shown by experiment results that the proposed algorithm can detect emotion well.

  • PDF