• Title/Summary/Keyword: Detection of Aerial Vehicle

Search Result 141, Processing Time 0.026 seconds

The Detection of Multi-class Vehicles using Swin Transformer (Swin Transformer를 이용한 항공사진에서 다중클래스 차량 검출)

  • Lee, Ki-chun;Jeong, Yu-seok;Lee, Chang-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.112-114
    • /
    • 2021
  • In order to detect urban conditions, the number of means of transportation and traffic flow are essential factors to be identified. This paper improved the detection system capabilities shown in previous studies using the SwinTransformer model, which showed higher performance than existing convolutional neural networks, by learning various vehicle types using existing Mask R-CNN and introducing today's widely used transformer model to detect certain types of vehicles in urban aerial images.

  • PDF

Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery (UAV와 다시기 위성영상을 이용한 붕괴건물 탐지)

  • Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.187-196
    • /
    • 2020
  • In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.

Study on the Application of RT-DETR to Monitoring of Coastal Debris on Unmanaged Coasts (비관리 해변의 해안 쓰레기 모니터링을 위한 RT-DETR 적용 방안 연구)

  • Ye-Been Do;Hong-Joo Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.453-466
    • /
    • 2024
  • To improve the monitoring of Coastal Debris in the South Korea, which is difficult to estimate due to limited resources and vertex-based surveys, an approach based on UAV(Unmanned Aerial Vehicle) images and the RT-DETR(Realtime DEtection TRansformer) model was proposed for detecting Coastal Debris. By comparing to field investigation, the study suggested the possibility of quantitatively detecting coastal garbage and estimating the total capacity of garbage deposited on the natural coastline of the South Korea. The RT-DETR model achieved an accuracy of 0.894 for mAP@0.5 and 0.693 for mAP@0.5:0.95 in training. When applied to unmanaged coasts, the accuracy for the total number of coastal debris items was 72.9%. It is anticipated that if guidelines for defining monitoring of unmanaged coasts are established alongside this research, it should be possible to estimate the total capacity of the deposited coastal debris in the South Korea.

An Analysis of the Operational Effectiveness of Target Acquisition Radar (포병 표적탐지 레이더 운용의 계량적 효과 분석)

  • Kang, Shin-Sung;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • In the future warfare, the importance of the counter-fire operation is increasing. The counter-fire operation is divided into offensive counter-fire operation and defensive counter-fire operation. Reviewing the researches done so far, the detection asset of offensive counter-fire operation called UAV(Unmanned Aerial Vehicle) and its operational effectiveness analysis is continually progressing. However, the analysis of the detection asset of defensive counterfire called Target Acquisition Radar(TAR) and its quantitative operational effectiveness are not studied yet. Therefore, in this paper, we studied operational effectiveness of TAR using C2 Theory & MANA Simulation model, and showed clear quantitative analysis results by comparing both cases of using TAR and not using TAR.

Comparative Accuracy of Terrestrial LiDAR and Unmanned Aerial Vehicles for 3D Modeling of Cultural Properties (문화재 3차원 모델링을 위한 지상 LiDAR와 UAV 정확도 비교 연구)

  • Lee, Ho-Jin;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.179-190
    • /
    • 2017
  • A terrestrial LiDAR survey was conducted and unmanned aerial vehicle(UAV) images were taken for target cultural properties to present the utilization measures of terrestrial LiDAR and UAV in three-dimensional modeling of cultural properties for the identification of the status and restoration of cultural properties. Then the accuracy of the point clouds generated through this process was compared, an overlap analysis of the 3D model was conducted, and a convergence model was created. According to the results, the modeling with terrestrial LiDAR is more appropriate for precise survey because 3D modeling for the detection of displacement and deformation of cultural properties requires an accuracy of mm units. And UAV model has limitation as the impossibility of detailed expression of parts with sharp unevenness such as cracks of bricks. However, it is found that the UAV model has a wide range of modeling and has the advantage of modeling of real cultural properties. Finally, the convergence model created in this study using the advantages of the terrestrial LiDAR model and the UAV model could be efficiently utilized for the basic data development of cultural properties.

Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV (MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구)

  • Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.453-464
    • /
    • 2019
  • Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.

Automatic Detection of Dead Trees Based on Lightweight YOLOv4 and UAV Imagery

  • Yuanhang Jin;Maolin Xu;Jiayuan Zheng
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.614-630
    • /
    • 2023
  • Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.

Real-time comprehensive image processing system for detecting concrete bridges crack

  • Lin, Weiguo;Sun, Yichao;Yang, Qiaoning;Lin, Yaru
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.445-457
    • /
    • 2019
  • Cracks are an important distress of concrete bridges, and may reduce the life and safety of bridges. However, the traditional manual crack detection means highly depend on the experience of inspectors. Furthermore, it is time-consuming, expensive, and often unsafe when inaccessible position of bridge is to be assessed, such as viaduct pier. To solve this question, the real-time automatic crack detecting system with unmanned aerial vehicle (UAV) become a choice. This paper designs a new automatic detection system based on real-time comprehensive image processing for bridge crack. It has small size, light weight, low power consumption and can be carried on a small UAV for real-time data acquisition and processing. The real-time comprehensive image processing algorithm used in this detection system combines the advantage of connected domain area, shape extremum, morphology and support vector data description (SVDD). The performance and validity of the proposed algorithm and system are verified. Compared with other detection method, the proposed system can effectively detect cracks with high detection accuracy and high speed. The designed system in this paper is suitable for practical engineering applications.

Drone-based Power-line Tracking System (드론 기반의 전력선 추적 제어 시스템)

  • Jeong, Jongmin;Kim, Jaeseung;Yoon, Tae Sung;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.773-781
    • /
    • 2018
  • In recent years, a study of power-line inspection using an unmanned aerial vehicle (UAV) has been actively conducted. However, relevant studies have been conducting power-line inspection with an UAV operated by manual control, and they have developed just power-line detection algorithm on aerial images. To overcome limitations of existing research, we propose a drone-based power-line tracking system in this paper. The main contributions of this paper are to operate developed system under configured environment and to develop a power-line detection algorithm in real-time. Developed system is composed of the power-line detection and the image-based tracking control. To detect a power-line in real-time, a region of interest (ROI) image is extracted. Furthermore, clustering algorithm is used in order to discriminate the power-line from background. Finally, the power-line is detected by using the Hough transform, and a center position and a tilt angle are estimated by using the Kalman filter to control a drone smoothly. We design a position controller and an attitude controller for image-based tracking control, and both controllers are designed based on the proportional-derivative (PD) control method. The interaction between the position controller and the attitude controller makes the drone track the power-line. Several experiments were carried out in environments where conditions are similar to actual environments, which demonstrates the superiority of the developed system.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.