• Title/Summary/Keyword: Detection circuit

Search Result 700, Processing Time 0.029 seconds

Design of radiation detection circuit for gamma column scanning (자동 감마 증류탑 검사 장치를 위한 방사선 계측장치 설계)

  • Kim, Jong-Beom;Jeong, Seong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.612-615
    • /
    • 2003
  • In this paper, a design of radiation detector for gamma column scanner is introduced. Distillation column is important unit in Petro-chemical industries, and its on-line diagnose is very important. To get density profile measured by the radiation transmitted through column is well method for on-line diagnose as gamma scanning. For this purpose radiation detection circuit, radiation source and mechanical system for moving source and detector are required. Conventional radiation detection circuit for this application is sensitive to electric noise because of interface between the radiation circuit and the controller for mechanical system. The radiation detection system introduced here is using loop coil instead of slip ring to remove contact noise. Radiation detection system designed here for gamma scanning consist of BGO detector, high voltage circuit, PHA circuit and FSK modem. The BGO detector is used as radiation sensor, high voltage circuit and peak height analysis circuit is essential to process the signal generated from BGO detector. Micro controller convert measured data into ASCII data. FSK modem transmit ASCII data. Transmitted ASCH data is picked up in antenna coil and processed for combined function with mechanical system. This method gives good result by isolating the controlling circuit of mechanical system from radiation detecting circuit which is sensitive to noise.

  • PDF

A Stuty of Protection Circuit for Discharge Lamp Ballast (방전등 안정기의 보호회로 기술 현황)

  • Han, Soo-Bin;Park, Suck-In;Song, Eu-Gine;Jeoung, Hak-Guen;Jung, Bong-Man
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.133-135
    • /
    • 2008
  • In a design of ballast for discharge lamp, various kind of protection circuit are essential for safe operation. In this paper, overvoltage and current detection, no-load detection, lamp-fault detection, end of lamp detection for protection are introduced. Individual circuit operation and their function are described with the base that all circuit form is similar with overvoltage protection circuit.

  • PDF

A Study on the Low Voltage Detection Circuit (저전압 감지회로에 관한 연구)

  • Kim, Phil-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.676-680
    • /
    • 2016
  • This paper describes a low voltage detection circuit used in the semiconductor chips. The circuit was composed of a detection part of the CMOS structure as three stages and two inverters. The output of the low voltage detection circuit become to 'high' from 'low', when the power supply voltage falls below 80%. When the power supply voltage is 5 V, it was detected at 4 V point. The proposed low voltage detection circuit can be easily applied only by changing the resister and the capacitor without structural change in a wide range of power supply voltage.

Switching Signal Patterns to Prevent Short Circuit of AC Choppers (교류초퍼에서 단락사고 방지를 위한 스위칭 신호 패턴)

  • Jang, Do-Hyeon;Yeon, Jae-Eul
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.445-452
    • /
    • 2001
  • Two switching signal patterns are proposed to prevent short circuit of PWM ac choppers. The voltage detection method and the current detection method are proposed to execute two switching signal patterns. In the voltage detection method, the dead-time has to be inserted to the switching signals after polarity of input voltage is checked by voltage transducer at input side. In the current detection method, the direction of load current is checked by current transducer at output side, and the dead-time delay is not considered. Controlling circuit built by current detection method is simple because the dead-time delay is considered. The experimental results are presented to prevent short circuit of ac chopper safely.

  • PDF

The Implementation of the system-on-board controllable the electrical fires due to ground fault, arc fault and overload (누전, 아크, 과부하에 의한 전기화재 제어 시스템 보드의 구현)

  • Kim, Byung-Cheul;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.419-424
    • /
    • 2011
  • The system-on-board detectable and controllable the electrical fires due to ground fault(GF), arc fault and overload is implemented. The system IC for controlling and preventing the electrical fires is available to this system. The GF detection circuit for detecting the electrical leakage current, the arc fault detection circuit and the overload detection circuit controllable the input voltage for flowing the overload current are designed. The GF detection circuit and the arc fault detection circuit are good operated to the electrical leakage current and the arc signal, respectively. It is confirmed that the overload detection circuit has shown no erratic operation with the noise or the load variation and is only operated at the overload condition.

A Trip Coil Fault Detection of Circuit Breaker (차단기 트립코일 이상감지 장치)

  • Youn, Ju-Houc;Lee, Jong-Hun;Park, Noh-Sik;Lee, Dong-Hea
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.61-68
    • /
    • 2011
  • The circuit breaker of power distribution board is essential part for the protection of electrical disaster from load short, trouble of power system. For the normal operation of circuit breaker, trip coil of the circuit breaker can cut the mechanical contact of circuit breaker from the detection of power system troubles. This paper presents a design and experimental results of trip coil fault detection system for the real time monitoring of the circuit breaker. The designed system is consisted by the trip coil fault detector which is connected to the each circuit breaker and remote monitoring unit. The trip coil fault detector can detect the impedance and operating voltage of the trip coil, and the detected values are compared with the normal state. And the remote monitoring unit can be connected to the 32 channels of trip coil fault detectors by serial communication. From the designed system, the fault and normal states of the trip coil can be remotely monitored in real time. The designed system is verified by the practical circuit breaker of power distribution board. And the results shows the effectiveness of the designed system.

Design of Gate Driver Chip for Ionizer Modules with Fault Detection Function (Fault Detection 기능을 갖는 이오나이저 모듈용 게이트 구동 칩 설계)

  • Jin, Hongzhou;Ha, PanBong;Kim, YoungHee
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.132-139
    • /
    • 2020
  • The ionizer module used in this air cleaner supplies high voltages of 3.5KV / -4KV to the discharge electrode HV+ / HV- using a winding transformer to generate positive and negative ions by electric field radiation of carbon fiber brush. The ionizer module circuit using the existing MCU has the disadvantage of large PCB size and expensive price, and the gate driver chip using the existing ring oscillator has oscillation period sensitive to PVT (Process-Voltage-Temperature) fluctuation and there is risk of fire or electric shock because there is no fault detection function by short circuit of HV+ and GND as well as HV- and GND. Therefore, in this paper, even though PVT fluctuates, by using 7-bit binary up counter, HV+ voltage reaches the target voltage by adjusting oscillation period. And an HV+ short fault detection circuit for detecting a short circuit between HV+ and GND, an HV- short fault detection circuit for detecting a short circuit between HV- and GND, and an OVP (Over-Voltage Protection) for detecting that HV+ rises above an overvoltage are newly proposed.

Design of Low Power Capacitive Sensing Circuit with a High Resolution in CMOS Technology

  • Jung, Seung-Min
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.301-304
    • /
    • 2011
  • This paper describes the possibility of a low-power, high-resolution fingerprint sensor chip. A modified capacitive detection circuit of charge sharing scheme is proposed, which reduces the static power dissipation and increases the voltage difference between a ridge and valley more than conventional circuit. The detection circuit is designed and simulated in 3.3V, 0.35${\mu}$m standard CMOS process, 40MHz condition. The result shows about 27% power dissipation reduction and 90% improvement of difference between a ridge and valley sensing voltage. The proposed circuit is more stable and effective than a typical circuit.

Capacitive Sensing Circuit for Low Power and High Resolution

  • Jung, Seung-Min;Yeo, Hyeop-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.692-695
    • /
    • 2011
  • This paper describes the possibility of a low-power, high-resolution fingerprint sensor chip. A modified capacitive detection circuit of charge sharing scheme is proposed, which reduces the static power dissipation and increases the voltage difference between a ridge and valley more than conventional circuit. The detection circuit is designed and simulated in 3.3V, $0.35{\mu}m$ standard CMOS process, 40MHz condition. The result shows about 35% power dissipation reduction and 90% improvement of difference between a ridge and valley sensing voltage. The proposed circuit is more stable and effective than a typical circuit.

  • PDF

Design of High-performance Pedestrian and Vehicle Detection Circuit using Haar-like Features (Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로 설계)

  • Kim, Soo-Jin;Park, Sang-Kyun;Lee, Seon-Young;Cho, Kyeong-Soon
    • The KIPS Transactions:PartA
    • /
    • v.19A no.4
    • /
    • pp.175-180
    • /
    • 2012
  • This paper describes the design of high-performance pedestrian and vehicle detection circuit using the Haar-like features. The proposed circuit uses a sliding window for every image frame in order to extract Haar-like features and to detect pedestrians and vehicles. A total of 200 Haar-like features per sliding window is extracted from Haar-like feature extraction circuit and the extracted features are provided to AdaBoost classifier circuit. In order to increase the processing speed, the proposed circuit adopts the parallel architecture and it can process two sliding windows at the same time. We described the proposed high-performance pedestrian and vehicle detection circuit using Verilog HDL and synthesized the gate-level circuit using the 130nm standard cell library. The synthesized circuit consists of 1,388,260 gates and its maximum operating frequency is 203MHz. Since the proposed circuit processes about 47.8 $640{\times}480$ image frames per second, it can be used to provide the real-time detection of pedestrians and vehicles.