• Title/Summary/Keyword: Detection characteristics

Search Result 3,434, Processing Time 0.033 seconds

Fault Detection for thyristors of Power Converter Module in Control Rod Control System (원자로 제어봉구동장치 제어시스템의 전력변환기 사이리스터 고장 검출)

  • Kim, Choon-Kyung;Cheon, Jong-Min;Lee, Jong-Moo;Jung, Soon-Hyun;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.559-562
    • /
    • 2003
  • In this paper, we introduce a new method detecting thyristor faults of the power converter module in Control Rod Control System. When we control the currents in each coil of Control Rod Drive Mechanism by using the current control method, the current value can follow the current reference despite the faults like the missing phase or the diode acting. Comparing the fault current values with the normal current values, the bad transient characteristics of the abnormal current can make the operations of control rods incorrect. In this case, the information from the current trends cannot be enough to detect the fault occurrence in thyristors. Instead of the coil currents, the state of thyristors can be watched by measuring the coil voltages. In the existing system of Westinghouse type, the ripple detector takes charge of this task. But this detector has some shortcomings in the point of time for fault detection, we come to devise a new fault detection method solving the problems which belong to the ripple detector.

  • PDF

A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography (한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법)

  • Kwon, Ju-Won;Kang, Ho-Kyung;Ro, Yong-Man;Kim, Sung-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

Angle Invariant and Noise Robust Barcode Detection System (기울기와 노이즈에 강인한 바코드 검출 시스템)

  • Park, Dongjin;Jun, Kyungkoo
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.868-877
    • /
    • 2015
  • The barcode area extraction from images has been extensively studied, and existing methods exploit frequency characteristics or depend on the Hough transform (HT). However, the slantedness of the images and noise affects the performance of these approaches. Moreover, it is difficult to deal with the case where an image contains multiple barcodes. We therefore propose a barcode detection algorithm that is robust under such unfavorable conditions. The pre-processing step implements a probabilistic Hough transform to determine the areas that contain barcodes with a high probability, regardless of the slantedness, noise, and the number of instances. Then, a frequency component analysis extracts the barcodes. We successfully implemented the proposed system and performed a series of barcode extraction tests.

Fault Detection of Small Turbojet Engine for UAV Using Unscented Kalman Filter and Sequential Probability Ratio Test (무향칼만필터와 연속확률비 평가를 이용한 무인기용 소형제트엔진의 결함탐지)

  • Han, Dong Ju
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-29
    • /
    • 2017
  • A study is performed for the effective detection method of a fault which is occurred during operation in a small turbojet engine with non-linear characteristics used by unmanned air vehicle. For this study the non-linear dynamic model of the engine is derived from transient thermodynamic cycle analysis. Also for inducing real operation conditions the controller is developed associated with unscented Kalman filter to estimate noises. Sequential probability ratio test is introduced as a real time method to detect a fault which is manipulated for simulation as a malfunction of rotational speed sensor contaminated by large amount of noise. The method applied to the fault detection during operation verifies its effectiveness and high feasibility by showing good and definite decision performances of the fault.

Statistical Analysis of Major Accident Reports and Development of a Real-time Detection Model for Portable Ladder and Safety Helmet (이동식사다리 중대재해 통계 분석 및 이동식사다리와 안전모 실시간 탐지 기계학습 모델 개발)

  • Choi, Seung-Ju;Jung, Kihyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • The leading source of occupational fatalities is a portable ladder in Korea because it is widely used in industry as work platform. In order to reduce victims, it is necessary to establish preventive measures for the accidents caused by portable ladder. Therefore, this study statistically analyzed injury death by portable ladder for recent 10 years to investigate the accident characteristics. Next, to monitor wearing of safety helmet in real-time while working on a portable ladder, this study developed an object detection model based on the You Only Look Once(YOLO) architecture, which can accurately detect objects within a reasonable time. The model was trained on 6,023 images with/without ladders and safety helmets. The performance of the proposed detection model was 0.795 for F1 score and 0.843 for mean average precision. In addition, the proposed model processed at least 25 frames per second which make the model suitable for real-time application.

A Fine Dust Measurement Technique using K-means and Sobel-mask Edge Detection Method (K-means와 Sobel-mask 윤곽선 검출 기법을 이용한 미세먼지 측정 방법)

  • Lee, Won-Hyeung;Seo, Ju-Wan;Kim, Ki-Yeon;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this paper, we propose a method of measuring Fine dust in images using K-means and Sobel-mask based edge detection techniques using CCTV. The proposed algorithm collects images using a CCTV camera and designates an image range through a region of interest. When clustering is completed by applying the K-means algorithm, outline is detected through Sobel-mask, edge strength is measured, and the concentration of fine dust is determined based on the measured data. The proposed method extracts the contour of the mountain range using the characteristics of Sobel-mask, which has an advantage in diagonal measurement, and shows the difference in detection according to the concentration of fine dust as an experimental result.

Design and Implementation of Fire Detection System Using New Model Mixing

  • Gao, Gao;Lee, SangHyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.260-267
    • /
    • 2021
  • In this paper, we intend to use a new mixed model of YoloV5 and DeepSort. For fire detection, we want to increase the accuracy by automatically extracting the characteristics of the flame in the image from the training data and using it. In addition, the high false alarm rate, which is a problem of fire detection, is to be solved by using this new mixed model. To confirm the results of this paper, we tested indoors and outdoors, respectively. Looking at the indoor test results, the accuracy of YoloV5 was 75% at 253Frame and 77% at 527Frame, and the YoloV5+DeepSort model showed the same accuracy at 75% at 253 frames and 77% at 527 frames. However, it was confirmed that the smoke and fire detection errors that appeared in YoloV5 disappeared. In addition, as a result of outdoor testing, the YoloV5 model had an accuracy of 75% in detecting fire, but an error in detecting a human face as smoke appeared. However, as a result of applying the YoloV5+DeepSort model, it appeared the same as YoloV5 with an accuracy of 75%, but it was confirmed that the false positive phenomenon disappeared.

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

3D Object Detection with Low-Density 4D Imaging Radar PCD Data Clustering and Voxel Feature Extraction for Each Cluster (4D 이미징 레이더의 저밀도 PCD 데이터 군집화와 각 군집에 복셀 특징 추출 기법을 적용한 3D 객체 인식 기법)

  • Cha-Young, Oh;Soon-Jae, Gwon;Hyun-Jung, Jung;Gu-Min, Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.471-476
    • /
    • 2022
  • In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.

Anomaly Detection Model Based on Semi-Supervised Learning Using LIME: Focusing on Semiconductor Process (LIME을 활용한 준지도 학습 기반 이상 탐지 모델: 반도체 공정을 중심으로)

  • Kang-Min An;Ju-Eun Shin;Dong Hyun Baek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.86-98
    • /
    • 2022
  • Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.