Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
Structural Engineering and Mechanics
/
제89권6호
/
pp.589-599
/
2024
This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.
Ga Young Yoo;Seung Keun Yoon;Mi Hyoung Moon;Seok Whan Moon;Wonjung Hwang;Kyung Soo Kim
Journal of Chest Surgery
/
제57권3호
/
pp.302-311
/
2024
Background: Unexpected conversion to thoracotomy during planned video-assisted thoracoscopic surgery (VATS) can lead to poor outcomes and comparatively high morbidity. This study was conducted to assess preoperative risk factors associated with unexpected thoracotomy conversion and to develop a risk scoring model for preoperative use, aimed at identifying patients with an elevated risk of conversion. Methods: A retrospective analysis was conducted of 1,506 patients who underwent surgical resection for non-small cell lung cancer. To evaluate the risk factors, univariate analysis and logistic regression were performed. A risk scoring model was established to predict unexpected thoracotomy conversion during VATS of the lung, based on preoperative factors. To validate the model, an additional cohort of 878 patients was analyzed. Results: Among the potentially significant clinical variables, male sex, previous ipsilateral lung surgery, preoperative detection of calcified lymph nodes, and clinical T stage were identified as independent risk factors for unplanned conversion to thoracotomy. A 6-point risk scoring model was developed to predict conversion based on the assessed risk, with patients categorized into 4 groups. The results indicated an area under the receiver operating characteristic curve of 0.747, with a sensitivity of 80.5%, specificity of 56.4%, positive predictive value of 1.8%, and negative predictive value of 91.0%. When applied to the validation cohort, the model exhibited good predictive accuracy. Conclusion: We successfully developed and validated a risk scoring model for preoperative use that can predict the likelihood of unplanned conversion to thoracotomy during VATS of the lung.
Chiao-Hsu Ke;Mao-Yuan Du;Wang-Ju Hsieh;Chiu-Chiao Lin;James Mingjuh Ting;Ming-Tang Chiou;Chao-Nan Lin
Journal of Veterinary Science
/
제25권2호
/
pp.28.1-28.11
/
2024
Background: Porcine circovirus type 2 (PCV2) infection is ubiquitous around the world. Diagnosis of the porcine circovirus-associated disease requires clinic-pathological elements together with the quantification of viral loads. Furthermore, given pig farms in regions lacking access to sufficient laboratory equipment, developing diagnostic devices with high accuracy, accessibility, and affordability is a necessity. Objectives: This study aims to investigate two newly developed diagnostic tools that may satisfy these criteria. Methods: We collected 250 specimens, including 170 PCV2-positive and 80 PCV2-negative samples. The standard diagnosis and cycle threshold (Ct) values were determined by quantitative polymerase chain reaction (qPCR). Then, two point-of-care (POC) diagnostic platforms, convective polymerase chain reaction (cPCR, qualitative assay: positive or negative results are shown) and EZtargex (quantitative assay: Ct values are shown), were examined and analyzed. Results: The sensitivity and specificity of cPCR were 88.23% and 100%, respectively; the sensitivity and specificity of EZtargex were 87.65% and 100%, respectively. These assays also showed excellent concordance compared with the qPCR assay (κ = 0.828 for cPCR and κ = 0.820 for EZtargex). The statistical analysis showed a great diagnostic power of the EZtargex assay to discriminate between samples with different levels of positivity. Conclusions: The two point-of-care diagnostic platforms are accurate, rapid, convenient and require little training for PCV2 diagnosis. These POC platforms can discriminate viral loads to predict the clinical status of the animals. The current study provided evidence that these diagnostics were applicable with high sensitivity and specificity in the diagnosis of PCV2 infection in the field.
The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.
Dong-Kun Yang;Eun-Ju Kim;Sang Ho Jang;Hye Jung Lee;Bitna Kim;Jin A Lee;Ju-Yeon Lee;Yun Sang Cho
대한수의학회지
/
제64권3호
/
pp.26.1-26.9
/
2024
Japanese encephalitis virus (JEV) is a mosquito-borne virus that can infect pigs, horses, and other mammals, including humans. Sero-epidemiological investigations of JEV have been performed using hemagglutination inhibition (HI), virus neutralization (VN) tests and enzyme-linked immunosorbent assay (ELISA). A need exists for a new ELISA that can detect JEV antibodies in the sera of several animal species. We aimed to develop a blocking ELISA (B-ELISA) for detecting JEV antibodies in pig and horse serum samples. JEV antibodies in 218 pig and 315 horse serum samples were measured using HI and VN tests. The purified KV1899-306 strain was used as an antigen for B-ELISA. The purified antibody (7A13) was conjugated with horseradish peroxidase and used as a detector antibody. The sera of pigs and horses to measure antibody against JEV were subjected to B-ELISA and analyzed. The B-ELISA had a diagnostic sensitivity of 94.6% to 100%, a specificity of 91.2 to 100%, and an accuracy of 94.9 to 98.6% compared with those of the HI and VN tests in pig and horse sera. The B-ELISA had a higher correlation with pig sera (r = 0.89 and 0.90 for VN and HI) than with horse sera (r = 0.75 and to 0.79). The new B-ELISA could be useful in the sero-surveillance of JEV in pig and horse sera and replace indirect ELISA.
Ye Jun Lee;Yong Kuk Kim;Da Young Kim;Jeongtack Min;Min-Kyu Kim
한국컴퓨터정보학회논문지
/
제29권8호
/
pp.43-51
/
2024
본 논문은 수중 활동을 주로 하는 다이버를 대상으로 특수 목적용 다이버 마스크를 이용해서 안구 데이터를 획득 및 분석하고, 이를 이용해서 사용자의 시선을 추적하는 방법에 대해 제안한다. 안구 데이터 분석을 위해 자체 제작한 안구 데이터 셋을 구축하였고, YOLOv8-nano 모델을 활용해서 학습 모델을 생성하였다. 학습 모델의 프레임 당 소요 시간은 평균 45.52ms를 달성하였고, 눈을 뜬 상태와 감는 상태를 구별하는 인식 성공률은 99%를 달성하였다. 안구 데이터 분석 결과를 바탕으로 현실 세계 좌표를 매칭할 수 있는 시선 추적 알고리즘을 개발하였다. 이 알고리즘의 검증 결과 x축은 약 1%, y축은 약 6%의 평균 오차율을 나타내는 것을 알 수 있었다.
본 연구는 자율 주행을 위한 과수원 내 2차원 지도를 생성하는 새로운 알고리즘을 제안한다. 제안하는 알고리즘은 과수원의 과수가 일반적으로 열로 정렬되어 있다는 특성에 기반하여, 나무 열을 감지하고 이 정보를 지도에 투영하는 것을 목표로 한다. 이를 위해 본 연구는 우선 점 구름 데이터에서 점들의 분포를 분석하여 나무를 인식하는 방법을 제안한다. 또한, 인식된 과수의 위치를 기반으로 과수 열을 추출하는 방법을 소개하고, 이를 2차원 과수원 지도에 통합한다. 본 연구는 LiDAR를 통해 획득한 실제 과수원 점 구름 데이터를 사용하여 제안하는 알고리즘을 검증하였다. 그 결과, 90%의 높은 과수 감지 정확도와 정밀한 과수 열 맵핑 결과를 보여주었다. 또한, 생성된 지도가 과수원의 구조에 맞춘 자연스러운 자율 주행 경로를 생성하는 데 도움을 주는 것을 확인하였다.
본 연구에서는 1980년대 도입되어 활용되고 있는 기상관측용 강우감지기의 관측 장애 및 오류 현황을 확인하고, 관측 효율 개선을 위해 강우감지기 1분 자료 수집, 산출 알고리즘 개선하고자 하였다. 오류 현황 분석 결과 강우감지기는 기상관측기 중 수동 품질관리를 가장 많이 시행되는 관측 장비로 이는 강수 산출 알고리즘 개선을 통해 강수 인식율 향상이 가능한 것으로 판단되었다. 국내외 강우감지기 알고리즘을 확인,선별하여 임의의 자료로 강수 인식율을 비교한 결과 10초 간격으로 강수를 측정 1회 이상 강수 측정 시 '강수'로 판별하는 알고리즘이 가장 높은 강수 인식율을 보였다. 해당 알고리즘이 강수를 과대모의하는 경향이 있으나 이는 원시자료 품질관리를 통해 개선 가능할 것으로 판단된다. 본 연구 결과를 토대로 강우감지기 오류율 감소와 정확도 향상에 기여할 수 있을 것으로 사료된다.
도심 지역에서의 굴착 작업은 지반 변형을 유발할 수 있으며, 이는 인근 인프라에 피해를 줄 수 있다. 지반 변형으로 인해 작업 현장 근처의 보도블록에 변위가 발생할 수 있다. 변위를 정확하게 측정하여 지반 변형의 잠재적인 위험을 평가하는 지표로 사용할 수 있다. 본 논문에서는 UGV에 장착된 3D 레이저 라인 센서를 이용한 강건하고 효율적인 보도블록 이격 측정 방법을 제안한다. 제안 방법은 2D 투영 기반 객체 탐지와 CPLF 알고리즘을 통한 측정의 두 단계로 구성된다. 실험 결과, CPLF 알고리즘이 PLF에 비해 효율적임을 확인했으며, CPLF 알고리즘이 1.36 mm의 오차와 10.76ms의 처리 시간을 보여 제안 방법이 다양한 유형의 보도블록과 환경적 요인이 존재하는 실제 환경에서도 UGV에서 3D 레이저 라인센서를 이용하여 강건한 온라인 측정을 보장하면서도 높은 정확성을 유지할 수 있음을 확인했다.
The incidence of colon cancer in South Korea has recently been the highest among gastrointestinal cancers. Early diagnosis is critical, and image-enhanced endoscopy (IEE) is a key diagnostic method. Colon tumors primarily include serrated polyps, adenomatous polyps, and colon cancer. Early endoscopic techniques relied on simple visual inspection for diagnosis, with tumor size and shape being the primary considerations. Low-resolution images made these methods ineffective for detecting small or early-stage lesions. IEE now enables detailed examination using high-resolution images and various color and structure analyses. Techniques like narrow band imaging (NBI) allow precise observation of vascular patterns and surface structures. Hyperplastic polyps often appear similar in color to the surrounding mucosa, with no visible vascular pattern. Sessile serrated lesions have a cloudy surface with distinct boundaries and irregular patterns, often with black spots in the crypts. Adenomatous polyps are darker brown, with a visible white epithelial network and various pit patterns. Magnified images help differentiate between low- and high-grade dysplasia, with low-grade showing regular patterns and high-grade showing increased irregularities. The NBI International Colorectal Endoscopic classification identifies malignant colon tumors as brown or dark brown with disorganized vascular patterns. The Japan NBI Expert Team classification includes loose vascular areas and disrupted thick vessels. The Workgroup serrAted polypS and Polyposis classification aids in differentiating between hyperplastic polyps and sessile serrated lesions/adenomas when deciding whether to resect polyps larger than 5 mm. Suspected high-grade dysplasia warrants endoscopic submucosal dissection and follow-up. Future advancements in IEE are expected to further enhance early detection and diagnostic accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.