• Title/Summary/Keyword: Detection accuracy

Search Result 4,083, Processing Time 0.04 seconds

Real-Time Container Shape and Range Recognition for Implementation of Container Auto-Landing System

  • Wei, Li;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.794-803
    • /
    • 2009
  • In this paper, we will present a container auto-landing system, the system use the stereo camera to measure the container depth information. And the container region can be detected by using its hough line feature. In the line feature detection algorithm, we will detect the parallel lines and perpendicular lines which compose the rectangle region. Among all the candidate regions, we can select the region with the same aspect-ratio to the container. The region will be the detected container region. After having the object on both left and right images, we can estimate the distance from camera to object and container dimension. Then all the detect dimension information and depth inform will be applied to reconstruct the virtual environment of crane which will be introduce in this paper. Through the simulation result, we can know that, the container detection rate achieve to 97% with simple background. And the estimation algorithm can get a more accuracy result with a far distance than the near distance.

  • PDF

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.

A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning (기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구)

  • Jo, Seonghyeon;Kwon, Wookyong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

A Localization Method for First and Second Heart Sounds Based on Energy Detection and Interval Regulation

  • Min, Se Dong;Shin, Hangsik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2126-2134
    • /
    • 2015
  • The present study suggests a localization method for the first (S1) and the second (S2) feature of heart sounds, based on an algorithm involving frequency filtering, energy detection, and interval regulation. Localization accuracy was evaluated by comparing the algorithm with the traditional Hilbert transform-based localization method. Results show that the sensitivity and the positive predictivity value of proposed method, respectively, were 97.27 % and 99.94 % in S1 detection and 94.99 % and 100 % in S2 detection.

Anomaly Detection in Medical Wireless Sensor Networks

  • Salem, Osman;Liu, Yaning;Mehaoua, Ahmed
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.272-284
    • /
    • 2013
  • In this paper, we propose a new framework for anomaly detection in medical wireless sensor networks, which are used for remote monitoring of patient vital signs. The proposed framework performs sequential data analysis on a mini gateway used as a base station to detect abnormal changes and to cope with unreliable measurements in collected data without prior knowledge of anomalous events or normal data patterns. The proposed approach is based on the Mahalanobis distance for spatial analysis, and a kernel density estimator for the identification of abnormal temporal patterns. Our main objective is to distinguish between faulty measurements and clinical emergencies in order to reduce false alarms triggered by faulty measurements or ill-behaved sensors. Our experimental results on both real and synthetic medical datasets show that the proposed approach can achieve good detection accuracy with a low false alarm rate (less than 5.5%).

A Study on the Performance Enhancement of Face Detection using SVM (SVM을 이용한 얼굴 검출 성능 향상에 대한 연구)

  • Lee Chi-Ceun;Jung Sung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.330-337
    • /
    • 2005
  • This paper proposes a method which improves the performance of face detection by using SVM(Support Vector Machine). first, it finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine). Experimental results shows that the proposed method improve accuracy of face detection in comparison with existing method.

New approach to two wheelers detection using Cell Comparison

  • Lee, Yeunghak;Kim, Taesun;Lee, Sanghoon;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.45-53
    • /
    • 2014
  • This article describes a two wheelers detection system riding on people based on modified histogram of oriented gradients (HOG) for vision based intelligent vehicles. These features used correlation coefficient parameter are able to classify variable and complicated shapes of a two wheelers according to different viewpoints as well as human appearance. Also our system maintains the simplicity of evaluation of traditional formulation while being more discriminative. In this paper, we propose an evolutionary method trained part-based models to classify multiple view-based detection: frontal, rear and side view (within $60^{\circ}C$). Our experimental results show that a two wheelers riding on people detection system based on proposed approach leads to higher detection accuracy rate than traditional features.

  • PDF

Contrast HOG and Feature Spatial Relocation based Two Wheeler Detection Research using Adaboost

  • Lee, Yeunghak;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • This article suggests a new algorithm for detecting two-wheelers on the road that have various shapes according to viewpoints. Because of complicated shapes, it is more difficult than detecting a human. In general, the Histograms of Oriented Gradients(HOG) feature is well known as a useful method of detecting a standing human. We propose a method of detecting a human on a two-wheelers using the spatial relocation of HOG (Histogram of Oriented Gradients) features. And this paper adapted the contrast method which is generally using in the image process to improve the detection rate. Our experimental results show that a two-wheelers detection system based on proposed approach leads to higher detection accuracy, less computation, and similar detection time than traditional features.

A study on the proceeding direction and obstacle detection by line edge extraction (직선 Edge 추출에 의한 주행방향 및 장애물 검출에 관한 연구)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.97-100
    • /
    • 1996
  • In this paper, we describe an algorithm which estimate road following direction using the vanishing point property and obstacle detection. This method of detecting the lane markers in a set of continuous lane highway images using linear approximation is presented. This algorithm is designed for accurate and robust extraction of this data as well as high processing speed. Also, this algorithm reckon distance and chase about an obstacle. It include four algorithms which are lane prediction, lane extraction, road following parameter estimation and obstacle detection algorithm. High accuracy was proven by quantitative evaluation using simulated images. Both robustness and the practicality of real time video rate processing were then confirmed through experiment using VTR real road images.

  • PDF

Drowsiness Detection using Eye-blink Patterns (눈 깜박임 패턴을 이용한 졸음 검출)

  • Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2011
  • In this paper, a novel drowsiness detection algorithm using eye-blink pattern is proposed. The proposed drowsiness detection model using finite automata makes it easy to detect eye-blink, drowsiness and sleep by checking the number of input symbols standing for closed eye state only. Also it increases the accuracy by taking vertical projection histogram after locating the eye region using the feature of horizontal projection histogram, and minimizes the external effects such as eyebrows or black-framed glasses. Experimental results in eye-blinks detection using the JZU eye-blink database show that our approach achieves more than 93% precision and high performance.