• Title/Summary/Keyword: Detection Status

Search Result 881, Processing Time 0.033 seconds

A Method to Identify the Identification Eye Status for Drowsiness Monitoring System (졸음 방지 시스템을 위한 눈 개폐 상태 판단 방법)

  • Lee, Juhyeon;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1667-1670
    • /
    • 2014
  • This paper describes a method for detecting the pupil region and identification of the eye status for driver drowsiness detection system. This program detects a driver's face and eyes using viola-jones face detection algorithm and extracts the pupil area by utilizing mean values of each row and column on the eye area. The proposed method uses binary images and the number of black pixels to identify the eye status. Experimental results showed that the accuracy of classification eye status(open/close) was above 90%.

Automated Analysis of Scaffold Joint Installation Status of UAV-Acquired Images

  • Paik, Sunwoong;Kim, Yohan;Kim, Juhyeon;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.871-876
    • /
    • 2022
  • In the construction industry, fatal accidents related to scaffolds frequently occur. To prevent such accidents, scaffolds should be carefully monitored for their safety status. However, manual observation of scaffolds is time-consuming and labor-intensive. This paper proposes a method that automatically analyzes the installation status of scaffold joints based on images acquired from a Unmanned Aerial Vehicle (UAV). Using a deep learning-based object detection algorithm (YOLOv5), scaffold joints and joint components are detected. Based on the detection result, a two-stage rule-based classifier is used to analyze the joint installation status. Experimental results show that joints can be classified as safe or unsafe with 98.2 % and 85.7 % F1-scores, respectively. These results indicate that the proposed method can effectively analyze the joint installation status in UAV-acquired scaffold images.

  • PDF

Anomaly Detection of Big Time Series Data Using Machine Learning (머신러닝 기법을 활용한 대용량 시계열 데이터 이상 시점탐지 방법론 : 발전기 부품신호 사례 중심)

  • Kwon, Sehyug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • Anomaly detection of Machine Learning such as PCA anomaly detection and CNN image classification has been focused on cross-sectional data. In this paper, two approaches has been suggested to apply ML techniques for identifying the failure time of big time series data. PCA anomaly detection to identify time rows as normal or abnormal was suggested by converting subjects identification problem to time domain. CNN image classification was suggested to identify the failure time by re-structuring of time series data, which computed the correlation matrix of one minute data and converted to tiff image format. Also, LASSO, one of feature selection methods, was applied to select the most affecting variables which could identify the failure status. For the empirical study, time series data was collected in seconds from a power generator of 214 components for 25 minutes including 20 minutes before the failure time. The failure time was predicted and detected 9 minutes 17 seconds before the failure time by PCA anomaly detection, but was not detected by the combination of LASSO and PCA because the target variable was binary variable which was assigned on the base of the failure time. CNN image classification with the train data of 10 normal status image and 5 failure status images detected just one minute before.

Video Based Tail-Lights Status Recognition Algorithm (영상기반 차량 후미등 상태 인식 알고리즘)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Do, Jin-Kyu;Park, Keun-Soo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1443-1449
    • /
    • 2013
  • Automatic detection of vehicles in front is an integral component of many advanced driver-assistance system, such as collision mitigation, automatic cruise control, and automatic head-lamp dimming. Regardless day and night, tail-lights play an important role in vehicle detecting and status recognizing of driving in front. However, some drivers do not know the status of the tail-lights of vehicles. Thus, it is required for drivers to inform status of tail-lights automatically. In this paper, a recognition method of status of tail-lights based on video processing and recognition technology is proposed. Background estimation, optical flow and Euclidean distance is used to detect vehicles entering tollgate. Then saliency map is used to detect tail-lights and recognize their status in the Lab color coordinates. As results of experiments of using tollgate videos, it is shown that the proposed method can be used to inform status of tail-lights.

Measuring Inner or Outer Position of Ship Passenger and Detection of Dangerous Situations based LoRa WAN Communication (LoRa WAN 통신 기반의 선박 내/외부 승선자 측위 및 위험상황 감지 시스템)

  • Park, Seok Hyun;Park, Moon Su
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.282-292
    • /
    • 2020
  • In order to minimize casualties from marine vessel accidents that occur frequently at home and abroad, it is important to ensure the safety of the passengers aboard the vessel in the event of an accident. There is an EPIRB system as a system for disaster preparedness in the marine situation currently on the market, but there is a problem that the price is very expensive. In order to overcome the cost problem, which is a disadvantage of previous system, LoRaWAN-based communication is used. LoRaWAN communication-based vessel positioning and risk detection system based on LoRaWAN communication transmits measurement data of each module using two Beacon and GPS modules to stably perform position measurement for both indoor and outdoor situations. The rider danger situation detection system can detect the safety status of the rider using the 3-axis acceleration sensor, collect data from the rider positioning system and the rider safety status detection system, and send to server using LoRa communication. When conducting communication experiments in the long-distance maritime situation and actual communication experiments using the implemented system, it was found that the two experiments showed over 90% communication success rate on average.

Clustering-based Monitoring and Fault detection in Hot Strip Roughing Mill (군집기반 열간조압연설비 상태모니터링과 진단)

  • SEO, MYUNG-KYO;YUN, WON YOUNG
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Purpose: Hot strip rolling mill consists of a lot of mechanical and electrical units. In condition monitoring and diagnosis phase, various units could be failed with unknown reasons. In this study, we propose an effective method to detect early the units with abnormal status to minimize system downtime. Methods: The early warning problem with various units is defined. K-means and PAM algorithm with Euclidean and Manhattan distances were performed to detect the abnormal status. In addition, an performance of the proposed algorithm is investigated by field data analysis. Results: PAM with Manhattan distance(PAM_ManD) showed better results than K-means algorithm with Euclidean distance(K-means_ED). In addition, we could know from multivariate field data analysis that the system reliability of hot strip rolling mill can be increased by detecting early abnormal status. Conclusion: In this paper, clustering-based monitoring and fault detection algorithm using Manhattan distance is proposed. Experiments are performed to study the benefit of the PAM with Manhattan distance against the K-means with Euclidean distance.

Lifetime Prediction Using Reliability Analysis Method about for the Electric Detection System (신뢰성분석 기법을 이용한 고속철도 검측시스템의 수명예측)

  • Lee, Hyunwoo;Lee, Byeong-Gon;Lee, Chunghan
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.191-196
    • /
    • 2014
  • The importance of railway safety has become increasingly significant domestically as well as internationally, as a series of high speed railway accidents and other major accidents have occurred recently. Especially for the domestic railway, the Korean Railway Safety Law has been revised recently, mandates all the domestic railway operation authorities to render the performance of RAMS and RCM. This study inspects and analyzes the current status of the sensing technology of the electric detection system to tell the status of railway facilities in the highway railway in a real time through a sensor. It also performs the reliability analysis of the electric detection system that is being progressed as a study assignment and suggests the system construction for the higher reliability.

Current Status and Analysis of Domestic Security Monitoring Systems (국내 보안관제 체계의 현황 및 분석)

  • Park, Si-Jang;Park, Jong-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.261-266
    • /
    • 2014
  • The current status of domestic monitoring centers was reviewed and the pattern-based security monitoring system and the centralized security monitoring system, both of which are the characteristics of security monitoring systems, were analyzed together with their advantages and disadvantages. In addition, as for a development plan of domestic security monitoring systems, in order to improve the problems of the existing pattern-based centralized monitoring system, Honeynet and Darknet, which are based on anomalous behavior detection, were analyzed and their application plans were described.

Outlier detection of main engine data of a ship using ensemble method (앙상블 기법을 이용한 선박 메인엔진 빅데이터의 이상치 탐지)

  • KIM, Dong-Hyun;LEE, Ji-Hwan;LEE, Sang-Bong;JUNG, Bong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.384-394
    • /
    • 2020
  • This paper proposes an outlier detection model based on machine learning that can diagnose the presence or absence of major engine parts through unsupervised learning analysis of main engine big data of a ship. Engine big data of the ship was collected for more than seven months, and expert knowledge and correlation analysis were performed to select features that are closely related to the operation of the main engine. For unsupervised learning analysis, ensemble model wherein many predictive models are strategically combined to increase the model performance, is used for anomaly detection. As a result, the proposed model successfully detected the anomalous engine status from the normal status. To validate our approach, clustering analysis was conducted to find out the different patterns of anomalies the anomalous point. By examining distribution of each cluster, we could successfully find the patterns of anomalies.

Improving the Vehicle Damage Detection Model using YOLOv4 (YOLOv4를 이용한 차량파손 검출 모델 개선)

  • Jeon, Jong Won;Lee, Hyo Seop;Hahn, Hee Il
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.750-755
    • /
    • 2021
  • This paper proposes techniques for detecting the damage status of each part of a vehicle using YOLOv4. The proposed algorithm learns the parts and their damages of the vehicle through YOLOv4, extracts the coordinate information of the detected bounding boxes, and applies the algorithm to determine the relationship between the damage and the vehicle part to derive the damage status for each part. In addition, the technique using VGGNet, the technique using image segmentation and U-Net model, and Weproove.AI deep learning model, etc. are included for objectivity of performance comparison. Through this, the performance of the proposed algorithm is compared and evaluated, and a method to improve the detection model is proposed.