• Title/Summary/Keyword: Detection Mechanism

Search Result 844, Processing Time 0.025 seconds

A Mechanism to profile Pavement Blocks and detect Cracks using 2D Line Laser on Vehicles (이동체에서 2D 선레이저를 이용한 보도블럭 프로파일링 및 균열 검출 기법)

  • Choi, Seungho;Kim, Seoyeon;Jung, Young-Hoon;Kim, Taesik;Min, Hong;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.135-140
    • /
    • 2021
  • In this paper, we propose an on-line mechanism that simultaneously detects cracks and profiling pavement blocks to detect the displacement of ground surface adjacent to the excavation in the urban area. The proposed method utilizes a 2D laser to profile the information about pavement blocks including the depth and distance among them. In particular, it is designed to enable the detection of cracks and portholes at runtime. For the experiment, real data was collected through Gocator, and trainng was carried out using Faster R-CNN. The performance evaluation shows that our detection precision and recall are more than 90% and the pavement blocks are profiled at the same time. Our proposed mechanism can be used for monitoring management to quantitatively detect the level of excavation risk before a large-scale ground collapse occurs.

A detection mechanism for Jump-Oriented Programming at binary level (바이너리 수준에서의 Jump-Oriented Programming에 대한 탐지 메커니즘)

  • Kim, Ju-Hyuk;Lee, Yo-Ram;Oh, Soo-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1069-1078
    • /
    • 2012
  • It is known that memory has been frequently a target threatening the computer system's security while attacks on the system utilizing the memory's weakness are actually increasing. Accordingly, various memory protection mechanisms have been studied on OS while new attack techniques bypassing the protection systems have been developed. Especially, buffer overflow attacks have been developed as attacks of Return to Library or Return-Oriented Programing and recently, a technique bypassing the countermeasure against Return-Oriented Programming proposed. Therefore, this paper is intended to suggest a detection mechanism at binary level by analyzing the procedure and features of Jump-Oriented Programming. In addition, we have implemented the proposed detection mechanism and experimented it may efficiently detect Jump-Oriented Programming attack.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

An Anomaly Detection Framework Based on ICA and Bayesian Classification for IaaS Platforms

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3865-3883
    • /
    • 2016
  • Infrastructure as a Service (IaaS) encapsulates computer hardware into a large amount of virtual and manageable instances mainly in the form of virtual machine (VM), and provides rental service for users. Currently, VM anomaly incidents occasionally occur, which leads to performance issues and even downtime. This paper aims at detecting anomalous VMs based on performance metrics data of VMs. Due to the dynamic nature and increasing scale of IaaS, detecting anomalous VMs from voluminous correlated and non-Gaussian monitored performance data is a challenging task. This paper designs an anomaly detection framework to solve this challenge. First, it collects 53 performance metrics to reflect the running state of each VM. The collected performance metrics are testified not to follow the Gaussian distribution. Then, it employs independent components analysis (ICA) instead of principal component analysis (PCA) to extract independent components from collected non-Gaussian performance metric data. For anomaly detection, it employs multi-class Bayesian classification to determine the current state of each VM. To evaluate the performance of the designed detection framework, four types of anomalies are separately or jointly injected into randomly selected VMs in a campus-wide testbed. The experimental results show that ICA-based detection mechanism outperforms PCA-based and LDA-based detection mechanisms in terms of sensitivity and specificity.

A Secure Encryption-Based Malware Detection System

  • Lin, Zhaowen;Xiao, Fei;Sun, Yi;Ma, Yan;Xing, Cong-Cong;Huang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1799-1818
    • /
    • 2018
  • Malware detections continue to be a challenging task as attackers may be aware of the rules used in malware detection mechanisms and constantly generate new breeds of malware to evade the current malware detection mechanisms. Consequently, novel and innovated malware detection techniques need to be investigated to deal with this circumstance. In this paper, we propose a new secure malware detection system in which API call fragments are used to recognize potential malware instances, and these API call fragments together with the homomorphic encryption technique are used to construct a privacy-preserving Naive Bayes classifier (PP-NBC). Experimental results demonstrate that the proposed PP-NBC can successfully classify instances of malware with a hit-rate as high as 94.93%.

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.

Performance Improvement of Infusion Detection System based on Hidden Markov Model through Privilege Flows Modeling (권한이동 모델링을 통한 은닉 마르코프 모델 기반 침입탐지 시스템의 성능 향상)

  • 박혁장;조성배
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.674-684
    • /
    • 2002
  • Anomaly detection techniques have teen devised to address the limitations of misuse detection approach for intrusion detection. An HMM is a useful tool to model sequence information whose generation mechanism is not observable and is an optimal modeling technique to minimize false-positive error and to maximize detection rate, However, HMM has the short-coming of login training time. This paper proposes an effective HMM-based IDS that improves the modeling time and performance by only considering the events of privilege flows based on the domain knowledge of attacks. Experimental results show that training with the proposed method is significantly faster than the conventional method trained with all data, as well as no loss of recognition performance.

DIntrusion Detection in WSN with an Improved NSA Based on the DE-CMOP

  • Guo, Weipeng;Chen, Yonghong;Cai, Yiqiao;Wang, Tian;Tian, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5574-5591
    • /
    • 2017
  • Inspired by the idea of Artificial Immune System, many researches of wireless sensor network (WSN) intrusion detection is based on the artificial intelligent system (AIS). However, a large number of generated detectors, black hole, overlap problem of NSA have impeded further used in WSN. In order to improve the anomaly detection performance for WSN, detector generation mechanism need to be improved. Therefore, in this paper, a Differential Evolution Constraint Multi-objective Optimization Problem based Negative Selection Algorithm (DE-CMOP based NSA) is proposed to optimize the distribution and effectiveness of the detector. By combining the constraint handling and multi-objective optimization technique, the algorithm is able to generate the detector set with maximized coverage of non-self space and minimized overlap among detectors. By employing differential evolution, the algorithm can reduce the black hole effectively. The experiment results show that our proposed scheme provides improved NSA algorithm in-terms, the detectors generated by the DE-CMOP based NSA more uniform with less overlap and minimum black hole, thus effectively improves the intrusion detection performance. At the same time, the new algorithm reduces the number of detectors which reduces the complexity of detection phase. Thus, this makes it suitable for intrusion detection in WSN.

Study of Danger-Theory-Based Intrusion Detection Technology in Virtual Machines of Cloud Computing Environment

  • Zhang, Ruirui;Xiao, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.239-251
    • /
    • 2018
  • In existing cloud services, information security and privacy concerns have been worried, and have become one of the major factors that hinder the popularization and promotion of cloud computing. As the cloud computing infrastructure, the security of virtual machine systems is very important. This paper presents an immune-inspired intrusion detection model in virtual machines of cloud computing environment, denoted I-VMIDS, to ensure the safety of user-level applications in client virtual machines. The model extracts system call sequences of programs, abstracts them into antigens, fuses environmental information of client virtual machines into danger signals, and implements intrusion detection by immune mechanisms. The model is capable of detecting attacks on processes which are statically tampered, and is able to detect attacks on processes which are dynamically running. Therefore, the model supports high real time. During the detection process, the model introduces information monitoring mechanism to supervise intrusion detection program, which ensures the authenticity of the test data. Experimental results show that the model does not bring much spending to the virtual machine system, and achieves good detection performance. It is feasible to apply I-VMIDS to the cloud computing platform.

Damage detection of composite materials via IR thermography and electrical resistance measurement: A review

  • Park, Kundo;Lee, Junhyeong;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.563-583
    • /
    • 2021
  • Composite materials, composed of multiple constituent materials with dissimilar properties, are actively adopted in a wide range of industrial sectors due to their remarkable strength-to-weight and stiffness-to-weight ratio. Nevertheless, the failure mechanism of composite materials is highly complicated due to their sophisticated microstructure, making it much harder to predict their residual material lives in real life applications. A promising solution for this safety issue is structural damage detection. In the present paper, damage detection of composite material via electrical resistance-based technique and infrared thermography is reviewed. The operating principles of the two damage detection methodologies are introduced, and some research advances of each techniques are covered. The advancement of IR thermography-based non-destructive technique (NDT) including optical thermography, laser thermography and eddy current thermography will be reported, as well as the electrical impedance tomography (EIT) which is a technology increasingly drawing attentions in the field of electrical resistance-based damage detection. A brief comparison of the two methodologies based on each of their strengths and limitations is carried out, and a recent research update regarding the coupling of the two techniques for improved damage detection in composite materials will be discussed.