The Journal of Korean Institute of Communications and Information Sciences
/
v.39C
no.10
/
pp.948-956
/
2014
Today, Intelligent Vehicle Detection System seeks to reduce the negative factors, such as accidents over to get the traffic information of existing system. This paper proposes detection algorithm for the illegal U-turn vehicles which can cause critical accident among violations of road traffic laws. We predicted that if calculated optical flow vectors were shown on the illegal U-turn path, they would be cause of the illegal U-turn vehicles. To reduce the high computational complexity, we use the algorithm of pyramid Lucas-Kanade. This algorithm only track the key-points likely corners. Because of the high computational complexity, we detect center lane first through the color information and progressive probabilistic hough transform and apply to the around of center lane. And then we select vectors on illegal U-turn path and calculate reliability to check whether vectors is cause of the illegal U-turn vehicles or not. Finally, In order to evaluate the algorithm, we calculate process time of the type of algorithm and prove that proposed algorithm is efficiently.
Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.
Rice black-streaked dwarf virus(RBSDV) was purified from infected maize leaves. Antiserum against RBSDV was prepared for virus detection by enzyme-linked immunosorbent assay(ELISA). In detection of RBSDV by ELISA, effective dilution range of antiserum extracted in RBSDV-containing host plants and insect vectors was from 320 to 2,560 times in rice plant, 320 to 5,120 in maize plant, and 160 to 2,560 times in insect vector, Laodelphax striatellus F, respectively. The percentage of viruliferous vector in overwintered nymphs of Laodelphax striatellus determined by ELISA were 3.0 in Milyang, 2.3 in Chilgok, and 3.7 in Sunsan area. Dead insect vector which could not be tested for vims infection by conventional rice seedling inoculation test could be tested by ELISA. One hundred plants of rice and maize were randomly sampled in the field and tested whether or not they were infected with RBSDV. In rice plants, 4 out of 98 plants turned out to be infected with RBSDV by ELISA. In maize plant, 3 out of 92 plants which were excepted 8 plants to be appeared symptom already were infected. As a result, ELISA could be detected even in case of symptomless plants at early stage of viral infection.
Ship monitoring using satellite synthetic aperture radar (SAR) images consists of ship detection, ship discrimination, and ship classification. A large number of methods have been proposed to improve the detection and discrimination capabilities, while only a few studies exist for ship classification. Thus, many studies for the ship classification are needed to construct ship monitoring system having high performance. Note that constructing database (DB), which contains both SAR images and labels of various ships, is important for research on the ship classification. In the airborne SAR classification, many methods have been developed using moving and stationary target acquisition and recognition (MSTAR) DB. However, there has been no publicly available DB for research on the ship classification using satellite SAR images. Recently, Shanghai Key Laboratory has constructed OpenSARShip DB using both SAR images of various ships generated from Sentinel-1 satellite of European Space Agency (ESA) and automatic identification system (AIS) information. Thus, the applicability of OpenSARShip DB for ship classification should be investigated by using the concepts of airborne SAR classification which have shown high performances. In this study, ship classification using satellite SAR images are conducted by applying the concepts of airborne SAR classification to OpenSARShip DB, and then the applicability of OpenSARShip DB is investigated by analyzing the classification performances.
Seasonal influenza epidemics cause 3 to 5 millions severe illness and 250,000 to 500,000 deaths worldwide each year. To prepare better controls on severe influenza epidemics, many studies have been proposed to achieve near real-time surveillance of the spread of influenza. Korea CDC publishes clinical data of influenza epidemics on a weekly basis typically with a 1-2-week reporting lag. To provide faster detection of epidemics, recently approaches using unofficial data such as news reports, social media, and search queries are suggested. Collection of such data is cheap in cost and is realized in near real-time. This research aims to develop regression models for early detecting the outbreak of the seasonal influenza epidemics in Korea with keyword query information provided from the Naver (Korean representative portal site) trend services for PC and mobile device. We selected 20 key words likely to have strong correlations with influenza-like illness (ILI) based on literature review and proposed a logistic regression model and a multiple regression model to predict the outbreak of ILI. With respect of model fitness, the multiple regression model shows better results than logistic regression model. Also we find that a mobile-based regression model is better than PC-based regression model in estimating ILI percentages.
In recent competitive business environment each enterprise has to be agile and flexible. For these purposes run-time monitoring ofservices provided by an enterprise and early decision making through this becomes core competition of the enterprise. In addition, in order to process various innumerable events which are generated on enterprise systems techniques which make filtering of meaningful data are needed. However, the existing study related with this is nothing but discovering of service faults by monitoring depending upon API of BPEL engine or middleware, or is nothing but processing of simple events based on low-level events. Accordingly, there would be limitations to provide useful business information. In this paper, through situation detection an extended complex event model is presented, which is possible to provide more valuable and useful business information. Concretely, first of all an event processing architecture in an enterprise system is proposed, and event meta-model which is suitable to the proposed architecture is going to be defined. Based on the defined meta-model, It is presented that syntax and semantics of constructs in our event processing language including various and progressive event operators, complex event pattern, key, etc. In addition, an event context mechanism is proposed to analyze more delicate events. Finally, through application studies application possibility of this study would be shown and merits of this event model would be present through comparison with other event model.
Today, due to the 4th industrial revolution and extensive R&D funding, domestic companies have begun to possess world-class industrial technologies and have grown into important assets. The national government has designated it as a "national core technology" in order to protect companies' critical industrial technologies. Particularly, technology leaks in the shipbuilding, display, and semiconductor industries can result in a significant loss of competitiveness not only at the company level but also at the national level. Every year, there are more insider leaks, ransomware attacks, and attempts to steal industrial technology through industrial spy. The stolen industrial technology is then traded covertly on the dark web. In this paper, we propose a system for detecting industrial technology leaks in the dark web environment. The proposed model first builds a database through dark web crawling using information collected from the OSINT environment. Afterwards, keywords for industrial technology leakage are extracted using the KeyBERT model, and signs of industrial technology leakage in the dark web environment are proposed as quantitative figures. Finally, based on the identified industrial technology leakage sites in the dark web environment, the possibility of secondary leakage is detected through the PageRank algorithm. The proposed method accepted for the collection of 27,317 unique dark web domains and the extraction of 15,028 nuclear energy-related keywords from 100 nuclear power patents. 12 dark web sites identified as a result of detecting secondary leaks based on the highest nuclear leak dark web sites.
There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.
Kim, Han-Joo;You, Sun-Kyung;Oh, Mi-Hyun;Shen, Qin;Wang, Xuemei;Park, Soo-Gil
Journal of the Korean Electrochemical Society
/
v.11
no.2
/
pp.105-108
/
2008
In the recent years, increasing interests are being focused on the rational functionalization of the CNTs by some creative methods. However, the considerable toxicity of CNT is still a controversialissue and limits its biological application. To improve the biocompatibility of CNT, in this work we prepared CNT-$TiO_2$ nanocomposites with CNT and organic titanium precursors. Our observations demonstratethat the modified interface could accelerate the heterogeneous electron transfer rates and thusenhance the relevant detection sensitivity, suggesting its potential application as the new strategy for the development of the biocompatible and multi-signal responsive biosensors for the early diagnosis of cancers.
The effect of three iron-based adsorbents pre-depositing on ultrafiltration membrane for humic acid (HA) removal and membrane fouling was investigated. The result showed that pre-depositing adsorbents on membrane could not only reduce membrane fouling but also enhance HA removal. The flux was related to the adsorbent dosage and the optimal dosage for pre-deposition was $35.0g/m^2$. The dissolved organic carbon (DOC) removal of HA was 38.3%, 67.3% and 41.1% respectively when pre-deposited $35.0g/m^2$$FeO_xH_y$, $MnFe_2O_4$ and $Fe_3O_4$ on membrane. Different adsorption effect of adsorbents on HA contributed to increasing of the flux at different level. Zeta potential of three adsorbents all decreased after adsorbed HA. The adsorption capacity of the three adsorbents was $FeO_xH_y$ > $MnFe_2O_4$ > $Fe_3O_4$. Atomic Force Microscopy (AFM) measurement showed the thickness of pre-deposition layers formed by different adsorbents was different. The scanning electron microscope (SEM) detection showed the morphology and compactness of pre-deposition layers formed by different adsorbents was different.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.