The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.11A
/
pp.1105-1116
/
2008
Cognitive radio is one of the most effective techniques to improve the spectrum utilization efficiency. To implement the cognitive radio, spectrum sensing is considered as the key functionality because only counting on it, can the secondary users identify the spectrum holes and utilize them efficiently without causing interference to primary users. Generally, there are several spectrum sensing methods; the most common and simplest method is energy detection. However, the conventional energy detection has some disadvantages, which are caused by noise, especially, uncertain noise power leads to degradation of energy detector. In this paper, to solve this problem, we proposed sliding window-based energy detection method which can devide the frequency band of primary signal and noise using sliding window to estimate the power of primary user without the noise effect and achieve the better performance. It can calculate the energy of primary user only and can detect the primary signal. The simulation result shows that our proposed method outperforms conventional one.
Journal of the Korea Institute of Information Security & Cryptology
/
v.26
no.6
/
pp.1513-1526
/
2016
Since finance companies started e-banking services, those services have been diversified and use of them has continued to increase. Finance companies are implementing financial security policy for safe e-banking services, but e-Banking incidents are continuing to increase and becoming more intelligent. Along with the rise of internet banks and boosting Fintech industry, financial supervisory institutes are not only promoting user convenience through improving e-banking regulations such as enforcing Non-face-to-face real name verification policy and abrogating mandatory use of public key certificate or OTP(One time Password) for e-banking transactions, but also recommending the prevention of illegal money transfer incidents through upgrading FDS(Fraud Detection System). In this study, we assessed a blacklist based auto detection method suitable for overall situations for finance company, a real-time based suspicious transaction detection method linking with blacklist statistics model by each security level, and an alternative FDS model responding to typical transaction patterns of which information were collected from previous e-Banking incidents.
Journal of Korean Tunnelling and Underground Space Association
/
v.19
no.5
/
pp.813-827
/
2017
Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.
The ISO/TS16949 APQP goal of defect prevention and decrease of spread waste, is the customer satisfaction which leads a continuous improvement and profit creation. The quality expense where the most is caused by but with increase of production initial quality problem occurrence is increasing to is actuality. Like this confirmation amendment. with the problem which is forecast in the place development at the initial stage which it does completeness it does not confront not to be able, production phase to be imminent, the problem accumulates and it talks the development shedding of which occurs. In opposition, prediction confrontation. is forecast in development early stage to and it is a structure which does not occur a problem to production early stage. Like this development is a possibility of accomplishing competitive company from production phase. Which attains an goal of, chance cause it leads a APQP activity (common cause) with special cause prevention & detection the connection characteristic of the focus technique against a interaction is important. And the customer requirement satisfaction and must convert a APQP goal of attainment at the key characteristics action step. (1) The Prevention - with Design FMEA application prevention of the present design management/detection, (2) the Detection (prevention/detection) - with Process FMEA application prevention of the present process control/detection, (3) Special Cause - statistical process control (SPC) 4M cause spread removal, (4) Common Cause - statistical process control (SPC) the nothing zero defect which leads the continuous improvement back of spread with application it will be able to attain with application.
Kim, Yesol;Lee, Hyosun;Cho, Sung-Ho;Jung, Hyun-Key
Geophysics and Geophysical Exploration
/
v.22
no.2
/
pp.72-79
/
2019
Underwater object detection method adopting electrical resistivity technique was proposed recently, and the need of advanced data processing algorithm development counteracting various marine environmental conditions was required. In this paper, we present an improved water tank experiment system and its operation results, which can provide efficient test and verification. The main features of the system are as follows: 1) All the processes enabling real time process for not only simultaneous gathering of object images but also the electrical field measurement and visualization are carried out at 5 Hz refresh rates. 2) Data acquisition and processing for two detection lines are performed in real time to distinguish the moving direction of a target object. 3) Playback and retest functions for the saved data are equipped. 4) Through the monitoring screen, the movement of the target object and the measurement status of two detection lines can be intuitively identified. We confirmed that the enhanced physical modeling system works properly and facilitates efficient experiments.
Journal of the Korea Society of Computer and Information
/
v.24
no.1
/
pp.73-83
/
2019
In this paper, we propose the augmented reality(AR) based driving navigation based on robust lane detection method to dynamic environment changes. The proposed technique uses the detected lane position as a marker which is a key element for enhancing driving information. We propose Symmetrical Local Threshold(SLT) algorithm which is able to robustly detect lane to dynamic illumination environment change such as shadows. In addition, by using Morphology operation and Connected Component Analysis(CCA) algorithm, it is possible to minimize noises in the image, and Region Of Interest(ROI) is defined through region division using a straight line passing through several vanishing points We also propose the augmented reality aided visualization method for Interchange(IC) and driving navigation using reference point detection based on the detected lane coordinates inside and outside the ROI. Validation experiments were carried out to assess the accuracy and robustness of the proposed system in vairous environment changes. The average accuracy of the proposed system in daytime, nighttime, rainy day, and cloudy day is 79.3% on 4600 images. The results of the proposed system for AR based IC and driving navigation were also presented. We are hopeful that the proposed research will open a new discussion on AR based driving navigation platforms, and thus, that such efforts will enrich the autonomous vehicle services in the near future.
P&ID((Piping and Instrument Diagram) is a key drawing in the engineering industry because it contains information about the units and instrumentation of the plant. Until now, simple repetitive tasks like listing symbols in P&ID drawings have been done manually, consuming lots of time and manpower. Currently, a deep learning model based on CNN(Convolutional Neural Network) is studied for drawing object detection, but the detection time is about 30 minutes and the accuracy is about 90%, indicating performance that is not sufficient to be implemented in the real word. In this study, the detection of symbols in a drawing is performed using 1-stage object detection algorithms that process both region proposal and detection. Specifically, build the training data using the image labeling tool, and show the results of recognizing the symbol in the drawing which are trained in the deep learning model.
Superparamagnetic iron oxide nanoparticles (SPIONs) are approved by the Food and Drug Administration (FDA) in the United States. SPIONs are used in magnetic resonance imaging (MRI) as contrast agents and targeted delivery in nanomedicine using external magnet sources. SPIONs act as an artificial peroxidase (i.e., nanozyme), and these reactions were highly stable in various pH conditions and temperatures. In this study, we report a nanozyme ability of the clustered SPIONs (CSPIONs) synthesized by the oil-in-water (O/W) method and coated with biocompatible poly(lactic-co-glycolic acid) (PLGA). We hypothesize that the CSPIONs can have high sensitivity toward H2O2 derived from the reaction between a fixed amount of glucose and glucose oxidase (GOX). As a result, CSPIONs oxidized a 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) commonly used as a substrate for hydrogen peroxidase in the presence of H2O2, leading to a change in the color of the substrate. We also utilized a colorimetric assay at 417 nm using various glucose concentrations from 5 mM to 1.25 μM to validate β-D-glucose detection. This study demonstrated that the absorbance value increases along with increasing the glucose level. The results were highly repeated at concentrations below 5 mM (all standard deviations < 0.03). Moreover, the sensitivity and limit of detection were 1.50 and 5.44 μM, respectively, in which CSPIONs are more responsive to glucose than SPIONs. In conclusion, this study suggests that CSPIONs have the potential to be used for glucose detection in diabetic patients using a physiological fluid such as ocular, saliva, and urine.
The pandemic of avian influenza viruses (AIVs) in Asia has caused enormous economic loss in poultry industry and human health threat, especially clade 2.3.4.4 H5 and H7 subtypes in recent years. The endemic chicken H6 virus in Taiwan has also brought about human and dog infections. Since wild waterfowls is the major AIV reservoir, it is important to monitor the diversified subtypes in wildfowl flocks in early stage to prevent viral reassortment and transmission. To develop a more efficient and sensitive approach is a key issue in epidemic control. In this study, we integrate multiplex reverse transcription recombinase polymerase amplification (RT-RPA) and capillary electrophoresis (CE) for high-throughput detection and differentiation of AIVs in wild waterfowls in Taiwan. Four viral genes were detected simultaneously, including nucleoprotein (NP) gene of all AIVs, hemagglutinin (HA) gene of clade 2.3.4.4 H5, H6 and H7 subtypes. The detection limit of the developed detection system could achieve as low as one copy number for each of the four viral gene targets. Sixty wild waterfowl field samples were tested and all of the four gene signals were unambiguously identified within 6 h, including the initial sample processing and the final CE data analysis. The results indicated that multiplex RT-RPA combined with CE was an excellent alternative for instant simultaneous AIV detection and subtype differentiation. The high efficiency and sensitivity of the proposed method could greatly assist in wild bird monitoring and epidemic control of poultry.
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.177-189
/
2023
Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.