• Title/Summary/Keyword: Detect-and-forward

Search Result 150, Processing Time 0.032 seconds

Development of a Walking-type Solar Panel Cleaning Robot Capable of Driving on Inclined Solar Panel (경사진 패널 위에서 주행이 가능한 보행형 태양광 패널 청소로봇 시스템 개발)

  • Park, Sunggwan;Jang, Woojin;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.79-88
    • /
    • 2020
  • This paper propose the method to drive a solar panel cleaning robot efficiently on an inclined panel using vacuum pad pressure. In this method, the rubber pads using the vacuum pressure are used to attach robot body to the panel surface. By applying the linkage mechanism to the vacuum pads, it was possible to reduce robot weight and power consumption and to prevent slipping of the robot. In addition, the use of solenoid valves, proximity sensors, and encoders to detect movement of the robot body and the control of the pad pressure dedicate to the driving of the robot on an inclined panel. In order to move the robot forward, the operation sequence of multiple solenoid valves was completed, and the six vacuum pads mounted to both legs were accurately controlled to form vacuum and atmospheric pressure in right order so that the robot could move forward without slipping. At last, it was confirmed through experiments that straight-forward moving and rotational movement could be performed up to 36 degrees of inclination angle of solar panel.

Ensemble Deep Learning Model using Random Forest for Patient Shock Detection

  • Minsu Jeong;Namhwa Lee;Byuk Sung Ko;Inwhee Joe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1080-1099
    • /
    • 2023
  • Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.

YOLOv4-based real-time object detection and trimming for dogs' activity analysis (강아지 행동 분석을 위한 YOLOv4 기반의 실시간 객체 탐지 및 트리밍)

  • Atif, Othmane;Lee, Jonguk;Park, Daihee;Chung, Yongwha
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.967-970
    • /
    • 2020
  • In a previous work we have done, we presented a monitoring system to automatically detect some dogs' behaviors from videos. However, the input video data used by that system was pre-trimmed to ensure it contained a dog only. In a real-life situation, the monitoring system would continuously receive video data, including frames that are empty and ones that contain people. In this paper, we propose a YOLOv4-based system for automatic object detection and trimming of dog videos. Sequences of frames trimmed from the video data received from the camera are analyzed to detect dogs and people frame by frame using a YOLOv4 model, and then records of the occurrences of dogs and people are generated. The records of each sequence are then analyzed through a rule-based decision tree to classify the sequence, forward it if it contains a dog only or ignore it otherwise. The results of the experiments on long untrimmed videos show that our proposed method manages an excellent detection performance reaching 0.97 in average of precision, recall and f-1 score at a detection rate of approximately 30 fps, guaranteeing with that real-time processing.

A new method to detect attacks on the Internet of Things (IoT) using adaptive learning based on cellular learning automata

  • Dogani, Javad;Farahmand, Mahdieh;Daryanavard, Hassan
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.155-167
    • /
    • 2022
  • The Internet of Things (IoT) is a new paradigm that connects physical and virtual objects from various domains such as home automation, industrial processes, human health, and monitoring. IoT sensors receive information from their environment and forward it to their neighboring nodes. However, the large amounts of exchanged data are vulnerable to attacks that reduce the network performance. Most of the previous security methods for IoT have neglected the energy consumption of IoT, thereby affecting the performance and reducing the network lifetime. This paper presents a new multistep routing protocol based on cellular learning automata. The network lifetime is improved by a performance-based adaptive reward and fine parameters. Nodes can vote on the reliability of their neighbors, achieving network reliability and a reasonable level of security. Overall, the proposed method balances the security and reliability with the energy consumption of the network.

Toxicogenomics and Cell-based Assays for Toxicology

  • Tong, Weida;Fang, Hong;Mendrick, Donna
    • Interdisciplinary Bio Central
    • /
    • v.1 no.3
    • /
    • pp.10.1-10.5
    • /
    • 2009
  • Toxicity is usually investigated using a set of standardized animal-based studies which, unfortunately, fail to detect all compounds that induce human adverse events and do not provide detailed mechanistic information of observed toxicity. As an alternative to conventional toxicology, toxicogenomics takes advantage of currently advanced technologies in genomics, proteomics, metabolomics, and bioinformatics to gain a molecular level understanding of toxicity and to enhance the predictive power of toxicity testing in drug development and risk/safety assessment. In addition, there has been a renewed interest, particularly in various government agencies, to prioritize and/or supplement animal testing with a battery of mechanistically informative in vitro assays. This article provides a brief summary of the issues, challenges and lessons learned in these fields and discuss the ways forward to further advance toxicology using these technologies.

A Scheme for Assembling Parts Using Visual Servoing (Visual Servoing을 이용한 움직이는 부품의 조립기법)

  • Noh, Sang-Soo;Park, Sang-Bum;Lee, Boo-Hyung;Hahn, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.837-838
    • /
    • 2006
  • This paper proposes a method of assembling parts using visual servoing in dynamic environment. We use SSD(Sum of Square Difference) based on adaptive template in order to detect a moving object in the case where the robot and the object both move. And the control input of the robot is obtained from the feed-back signal of the feature movement and the feed-forward signal of the camera movement in image plane.

  • PDF

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

Fault Detection and Diagnosis for an Air-Handling Unit Using Artificial Neural Networks (신경망 이용 공조기 고장검출 및 진단)

  • 이원용;경남호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1288-1296
    • /
    • 2001
  • A scheme for on-line fault detection and diagnosis of an air-handling unit is presented. The fault detection scheme uses residuals which are generated by comparing each measurement with analytical redundancies computed from the reference models. In this paper, artificial neural networks (ANNs) are used to estimate analytical redundancy and to classify faults. The Lebenburg-Marquardt algorithm is used to train feed forward ANNs that provide estimates of continuous states and diagnosis results. The simulation result demonstrated that the ANNs can effectively detect and diagnose faults in the highly non-linear and complex HVAC systems.

  • PDF

Performance Comparison of Coherent and Non-Coherent Detection Schemes in LR-UWB System

  • Kwon, Soonkoo;Ji, Sinae;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.518-523
    • /
    • 2012
  • This paper presents new coherent and non-coherent detection methods for the IEEE 802.15.4a low-rate ultra-wideband physical layer with forward error correction (FEC) coding techniques. The coherent detection method involving channel estimation is based on the correlation characteristics of the preamble signal. A coherent receiver uses novel iterated selective-rake (IT-SRAKE) to detect 2-bit data in a non-line-of-sight channel. The non-coherent detection method that does not involve channel estimation employs a 2-bit data detection scheme using modified transmitted reference pulse cluster (M-TRPC) methods. To compare the two schemes, we have designed an IT-SRAKE receiver and a MTRPC receiver using an IEEE 802.15.4a physical layer. Simulation results show the performance of IT-SRAKE is better than that of the M-TRPC by 3-9 dB.

Anomaly Detection System for Solar Power Distribution Panels utilizing Thermal Images

  • Kwang-Seong Shin;Jong-Chan Kim;Seong-Yoon Shin
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.159-164
    • /
    • 2024
  • This study aimed to develop an advanced anomaly-detection system tailored for solar power distribution panels using thermal imaging cameras to ensure operational stability. It addresses the imperative shift toward digitalized safety management in electrical facilities, transcending the limitations of conventional empirical methodologies. Our proposed system leverages a faster R-CNN-based artificial intelligence model optimized through meticulous hyperparameter tuning to efficiently detect anomalies in distribution panels. Through comprehensive experimentation, we validated the efficacy of the system in accurately identifying anomalies, thereby propelling safety protocols forward during the fourth industrial revolution. This study signifies a significant stride toward fortifying the integrity and resilience of solar power distribution systems, which is pivotal for adapting to emerging technological paradigms and evolving safety standards in the energy sector. These findings offer valuable insights for enhancing the reliability and efficiency of safety management practices and fostering a safer and more sustainable energy landscape.