• Title/Summary/Keyword: Detect Algorithm

Search Result 2,770, Processing Time 0.036 seconds

Forced-Vibration-Based Identification of Stiffness Reduction Distribution in Thin Plates with an Arbitrary Damage Shape (임의의 손상형태를 갖는 박판의 강제진동 기반 강성저하 분포 규명)

  • Song, Yoo-Seob;Lee, Sang-Youl;Park, Tae-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • This study deals with a method to identify structural damage using the combined finite element method (FEM) and the advanced damage search technique. The novelty of this study is the application of plates with arbitrary damage shapes and their response due to the anomalies in a structure subjected to impact loading. The technique described in this paper may allow us not only to detect the stiffness distribution of the damaged areas but also to find locations and the extent of damage. To demonstrate the feasibility of the method, the algorithm is applied to a steel thin plate structures with an arbitrary damage shape. The results demonstrate the excellencies of the method from the standpoints of computation efficiency as well as its ability to investigate the arbitrary stiffness reductions.

Configuration and Application of a deep learning-based fall detection system (딥러닝 기반 낙상 감지 시스템의 구성과 적용)

  • Jong-Seok Woo;Lionel Kyenyeneye;Sang-Joong Jung;Wan-Young Chung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • Falling occurs unexpectedly during daily activities, causing many difficulties in life. The purpose of this study was to establish a system for fall detection of high-risk occupations and to verify their effectiveness by collecting data and applying it to predictive models. To this end, a wearable device was configured to detect fall by calculating acceleration signals and azimuths through acceleration sensors and gyro sensors. In addition, the study participants wore the device on their abdomen and measured necessary data from falls-related movements in the process of performing predetermined activities and transmitted it to the computer through a Bluetooth device present in the device. The collected data was processed through filtering, applied to fall detection prediction models based on deep learning algorithms which are 1D CNN, LSTM and CNN-LSTM, and evaluate the results.

Development of the self-diagnosis system for initial stage of developmental disability (발달장애 초기 자가 진단 시스템 개발)

  • WonSang Yu;Hyun-Woo Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.367-372
    • /
    • 2024
  • Although developmental disabilities account for a relatively low number of the total number of disabilities, they are generally classified as severe disabilities considering the degree of disability. If these developmental disorders are discovered early, adaptability and early treatment efficiency can be improved, but most parents do not detect any signs from their children or miss the right time for treatment. In this paper, we conducted development of the developmental disorder diagnosis algorithm that can recognize hand-flapping, one of the early unusual behaviors of developmental disorders, for parents and early childhood care workers who cannot recognize signs of early developmental disorders based on specific behavioral characteristics as a pilot study. It was confirmed that the recognition area and fingers were accurately recognized, and the number of hand flapping was accurately counted. It is expected that research on algorithms that can diagnose various behavioral patterns will continue to be conducted and expanded all through algorithms advancement and expansion of functional performance using big data.

DBSCAN Clustering-Based Detection of Signaling Attack in 5G/LTE Networks (5G/LTE 네트워크에서의 DBSCAN 클러스터링 기반 시그널링 공격 탐지)

  • Yerin Kwon;Junbeom Hur
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.1059-1071
    • /
    • 2024
  • The 5G mobile network provides various services to numerous devices and applications, unlike LTE which focuses on smartphones. Features of 5G, such as low latency and massive connectivity, increase the overhead of the control plane(CP, signaling part) and make it difficult to detect abnormal devices due to random traffic patterns. In this paper, we propose a DBSCAN clustering-based detection method to counter signaling attacks, which are a type of 'Denial of Service(DoS)' attack targeting mobile networks. DBSCAN helps to create clusters of various shapes and can address dynamic traffic because the algorithm needs not to depend on past traffic statistics. We also use a real-time traced dataset for experiments to assess usability in real-world scenarios. According to the experiments, our method achieves 99.32% of accuracy and 0.03% of false-positive rates, demonstrating superior performance compared to previous works.

Virtual Reality Contents for Rehabilitation Training Utilizing Skeletal Data and Foot Pressure Mat (골격 데이터와 발 압력매트를 활용한 재활 훈련용 가상 현실 콘텐츠)

  • Jongwook Si;Hyeri Jeong;Sangjin Lee;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.330-338
    • /
    • 2024
  • With the growing interest in rehabilitation therapy and exercise programs, there is an increasing need for smart content that simultaneously addresses both health and engagement. Particularly, exercises performed in a state of physical imbalance carry a high risk of injury, making it essential to detect and integrate balance into the training process. This paper proposes Rehabilitation Training program that combines a pressure platform with virtual reality (VR) technology to address this issue. The program enables users to perform exercises such as squats, stationary walking, and forward-backward walking in a VR environment, utilizing real-time foot pressure data captured through a pressure mat. Additionally, an algorithm based on YOLOv8-pose extracted skeletal coordinates is proposed to assess body balance and automatically count squat repetitions. The experimental results showed an average accuracy of 87.9% for each posture, confirming that users can be provided with a safer, more efficient, and immersive training experience through this approach.

Print-Scan Resilient Curve Watermarking using B-Spline Curve Model and its 2D Mesh-Spectral Transform (B-스프라인 곡선 모델링 및 메시-스펙트럼 변환을 이용한 프린트-스캔에 강인한 곡선 워터마킹)

  • Kim, Ji-Young;Lee, Hae-Yeoun;Im, Dong-Hyuck;Ryu, Seung-Jin;Choi, Jung-Ho;Lee, Heung-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.307-314
    • /
    • 2008
  • This paper presents a new robust watermarking method for curves that uses informed-detection. To embed watermarks, the presented algorithm parameterizes a curve using the B-spline model and acquires the control points of the B-spline model. For these control points, 2D mesh are created by applying Delaunay triangulation and then the mesh spectral analysis is performed to calculate the mesh spectral coefficients where watermark messages are embedded in a spread spectrum way. The watermarked coefficients are inversely transformed to the coordinates of the control points and the watermarked curve is reconstructed by calculating B-spline model with the control points. To detect the embedded watermark, we apply curve matching algorithm using inflection points of curve. After curve registration, we calculate the difference between the original and watermarked mesh spectral coefficients with the same process for embedding. By calculating correlation coefficients between the detected and candidate watermark, we decide which watermark was embedded. The experimental results prove the proposed scheme is more robust than previous watermarking schemes against print-scan process as well as geometrical distortions.

Implementation of A Safe Driving Assistance System and Doze Detection (졸음 인식과 안전운전 보조시스템 구현)

  • Song, Hyok;Choi, Jin-Mo;Lee, Chul-Dong;Choi, Byeong-Ho;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.30-39
    • /
    • 2012
  • In this paper, a safe driving assistance system is proposed by detecting the status of driver's doze based on face and eye detection. By the level of the fatigue, safe driving system alarms or set the seatbelt on vibration. To reduce the effect of backward light and too strong solar light which cause a decrease of face and eye detection rate and false fatigue detection, post processing techniques like image equalization are used. Haar transform and PCA are used for face detection. By using the statistic of the face and eye structural ratio of normal Koreans, we can reduce the eye candidate area in the face, which results in reduction of the computational load. We also propose a new eye status detection algorithm based on Hough transform and eye width-height ratio, which are used to detect eye's blinking status which decides doze level by measuring the blinking period. The system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. In this paper, four algorithms are implemented and proposed algorithm is made based on the probability model and we achieves 84.88% of correct detection rate through indoor and in-car environment experiments. And also we achieves 69.81% of detection rate which is better result than that of other algorithms using IR camera.

Real-Time Head Tracking using Adaptive Boosting in Surveillance (서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 2013
  • This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.

Efficient Object Localization using Color Correlation Back-projection (칼라 상관관계 역투영법을 적용한 효율적인 객체 지역화 기법)

  • Lee, Yong-Hwan;Cho, Han-Jin;Lee, June-Hwan
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.263-271
    • /
    • 2016
  • Localizing an object in image is a common task in the field of computer vision. As the existing methods provide a detection for the single object in an image, they have an utilization limit for the use of the application, due to similar objects are in the actual picture. This paper proposes an efficient method of object localization for image recognition. The new proposed method uses color correlation back-projection in the YCbCr chromaticity color space to deal with the object localization problem. Using the proposed algorithm enables users to detect and locate primary location of object within the image, as well as candidate regions can be detected accurately without any information about object counts. To evaluate performance of the proposed algorithm, we estimate success rate of locating object with common used image database. Experimental results reveal that improvement of 21% success ratio was observed. This study builds on spatially localized color features and correlation-based localization, and the main contribution of this paper is that a different way of using correlogram is applied in object localization.